RSPT 1410 Humidity & Aerosol Therapy Part 3

1

2

3

)

Wilkins: Chapter 35, p. 775-799 Cairo: Chapter 4, p. 88-143

Humidification Equipment

- A humidifier is a device that adds molecular liquid (e.g. water vapor) to gas, most often by simple evaporation - these devices are used primarily to humidify inspired gases
- A nebulizer is a device that adds particulate liquid (e.g. saline aerosol) to gas through a process known as nebulization - these devices are used when therapeutic amounts of liquid are needed

Aerosol Therapy

- Delivery requires
 - gas source
 - aerosol generator (______aerosol delivery device
 - aerosol delivery devic
 aerosol mask
 - face tent
 - Briggs' adapter (t-tube)
 - tracheostomy mask
 - appropriate tubing

• Large volume jet nebulizers

device used to deliver bland aerosol

4

5

6

- pneumatically powered
- use the ______ theory (similar to Venturi)
- create aerosol by passing gas at high velocity through a small jet - this causes a pressure drop which draws fluid up through a siphon tube where the high velocity gas shears it and shatters it into liquid particles – producing a heterodisperse spray

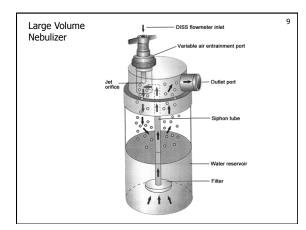
Heterodisperse refers to an aerosol consisting of particles of varying diameters and sizes. Particle size, in part, determines where aerosol particles will be deposited in the lungs.

Area of Deposition	Particle Diameter
Upper airway: nose, larynx, trachea	5-20 microns
Lower airways	2-5 microns
Parenchyma: alveolar region	1-3 microns

Aerosol Generators

• Large volume jet nebulizers

- large particles hit against surfaces or fall back into the reservoir (______)
- some nebulizers incorporate a built-in structural baffle near the jet
- smaller, more stable particles are carried through the outlet by the gas stream
- a venturi with variable entrainment ports allows
 _____ mixing and various


- Large volume jet nebulizers
 - can deliver cool or heated aerosol
 - total output from a typical unheated large volume nebulizer is approximately mg $\rm H_2O/L$

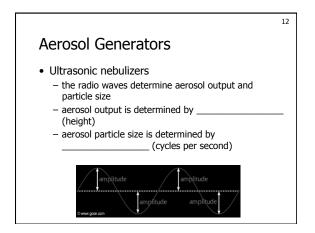
7

8

- total output from a typical heated large volume nebulizer is approximately _____ mg $\rm H_2O/L$
- heating is accomplished with some type of heater,
 e.g. hot-plate, immersion, collar or wrap-around when using heated aerosol, a ______
 should be used in-line

- Large volume jet nebulizers
 - nebulizers that attach to ______ at the bedside are suitable for most general aerosol delivery needs
 - larger versions with reservoirs of 2-3 liters are used for aerosol delivery in ______
 - these devices can generate flows of ____ L/min with water outputs up to ____ ml/hr
 - except where room temperatures are set very low, these systems should be run on "_____""

• Ultrasonic nebulizers


- _____ powered
 use a radio frequency device and a
 - transducer to generate aerosol

10

11

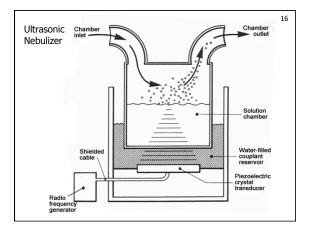
- the radio frequency device transmits radio waves through a shielded cable to the piezoelectric transducer
- crystal converts radio waves into highfrequency mechanical waves (sound)

- Ultrasonic nebulizers
 - these waves are transmitted either indirectly through a ______ chamber or directly to a liquid surface where the intense mechanical energy produces a "geyser" of liquid and aerosol particles
 - a ______generates flow through the aerosol chamber which carries aerosol particles through the outlet to the patient – flow is adjustable only with a simple damper or butterfly valve

- Ultrasonic nebulizers

13

14

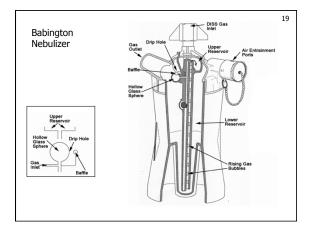

15

 usually the frequency is preset during by the manufacturer – most operate at frequencies of 1.25-2.25 MHz (megahertz = 1 million cycles per second)

Aerosol Generators

- Ultrasonic nebulizers
 - set properly, some units can deliver _____ ml/min or close to _____ mg/L
 - since the incorporated blowers only move room air, to increase FIO_2 above 0.21, O_2 must be added
 - USNs are quite ______ compared to pneumatic large volume nebulizers – as much as 10 times the cost

- Ultrasonic nebulizers
 - USNs are most suitable for special uses, such as
 - also now available for home use in the form of room humidifiers

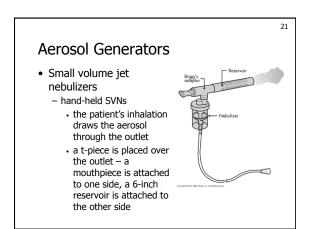

17

18

Aerosol Generators

- Babington nebulizers
 - _____ powered
 - use the principle of a jet stream of gas being directed through a thin film of continually flowing liquid spread across a rounded surface
 - the gas penetrates the liquid surface causing aerosol particles to be formed which are then baffled and sent to the patient
 - a venturi with variable entrainment ports allows air/O $_2$ mixing and various FIO $_2$ s

- Babington nebulizers
 - while not as expensive as ultrasonic nebulizers, these devices are still considerably more expensive than standard large volume jet nebulizers
 - do have advantages over standard large volume jet nebulizers in terms of output and particle size, but probably not enough to justify the added cost
 - also available in large reservoir sizes that can be used in tents and other enclosures

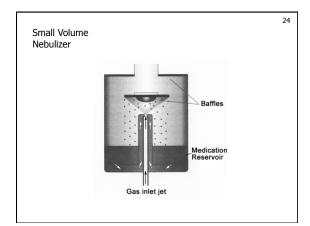


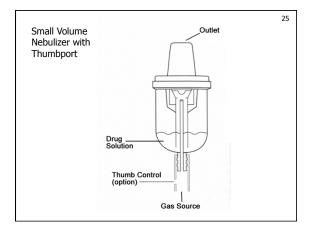
- Small volume jet nebulizers - used for the administration of

 - work on the same principles as the large volume jet nebulizers (Bernoulli theory)

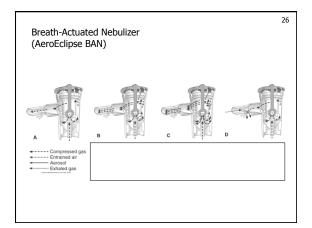
20

- gas passing through the jet passes by the opening of a capillary tube immersed in solution, which is drawn up into the gas stream - the solution is sheared into droplets with diameters in the _ micron range
- the droplets are then directed against one or more baffles


- Small volume jet nebulizers
 - one problem with hand-held SVNs is that they run _______, so if a patient is breathing at a 1:2 I:E ratio, only 33% of the aerosol will be inhaled


22

23


 to help conserve medication, some SVNs utilize a patient-controlled thumbport – the patient closes the thumbport during inhalation, directing the gas through the jet; on exhalation, the thumbport is open, directing the gas out through the port – this effectively stops nebulization

- Small volume jet nebulizers
 - the gas flow powering the nebulizer should be set at the manufacturer's recommended liter flow – usually about _____ L/min
 - in the hospital setting, O_2 is used to power the nebulizer more out of convenience than necessity
 - hand-held SVNs will run as well using air
 - _____ can also be used, but aerosol production will be significantly decreased

- Small volume jet nebulizers
 - manifold units
 - incorporated into breathing circuits for IPPB and other devices

27

- operating principle is the same
- do not rely on patient's inhalation, flow is controlled by the positive pressure device
- most of these devices can be set to power the nebulizer continuously or during inhalation only

Aerosol Delivery Devices

- Aerosol mask
 - similar in design to O_2 masks, except that the exhalation port openings are larger
 - device of choice for short-term therapy to patients with intact ______

28

29

30

 has the same disadvantages and problems with patient compliance as O₂ masks

Aerosol Delivery Devices

Face tent

- better choice for long-term therapy and for patients who will not wear the _____ mask
- has a large reservoir extending out from the face
- more comfortable and patient compliance is better

- tolerated well by most patients

Aerosol Delivery Devices

• Briggs' adapter (TP; t-piece; t-tube)

- most commonly used device for patients with an ______ in place
- only choice for endotracheal tubes
- since it does attach directly to the airway, it put traction on the tube, causing discomfort and possibly accidental ______
- for best results, attach a 6-inch reservoir to the distal side of the airway

Aerosol Delivery Devices

- Tracheostomy mask
 - better choice for the patient with a tracheostomy tube in place

31

32

- more ______ with no traction on the tube
- if not kept clean, it can pose a risk of infection
- position should be monitored

Aerosol Delivery Devices

• the choice of the device used should be based on the patient's condition, comfort and compliance with therapy