Unit 4 Oxygen Delivery Devices

GOAL

On completion of this unit, the student should have an understanding of the proper use of different oxygen delivery devices.

COMPETENCIES

- 1. Demonstrate proper techniques for applying oxygen administration devices.
- 2. Calculate the air-to-oxygen ratio in venturi masks.
- 3. Calculate total gas flow from venturi masks.
- 4. Analyze the delivered FIO2 from a venturi mask
- 5. Measure the total gas flow from a venturi mask.

EQUIPMENT

- 1. oxygen administration devices
 - a. nasal cannula
 - b. medium concentration mask
 - c. partial rebreathing mask
 - d. nonrebreathing mask
 - e. venturi mask
- 2. bubble humidifier
- 3. water
- 4. oxygen source
- 5. oxygen flowmeter with nipple
- 6. oxygen analyzer
- 7. Briggs' adaptor
- 8. two 6 inch flex tubes
- 9. respirometer
- 10. helium tank
- 11. helium regulator

EXERCISE A - USE OF OXYGEN DELIVERY DEVICES

1. With your lab partner, demonstrate proper techniques for applying the following oxygen administration devices.

- a. nasal cannula
- b. medium concentration mask
- c. partial rebreathing mask
- d. nonrebreathing mask
- e. venturi mask

EXERCISE B - VENTURI MASK AIR-TO-OXYGEN RATIO CALCULATION

$$\frac{100 - \%O_2}{\%O_2 - 21} = \text{air/O}_2 \text{ ratio}$$

(use %O₂-20 if FIO₂ > .4)

1. Calculate the air-to-oxygen ratio in a 40% venturi mask.

a. air/O₂ ratio =
$$\frac{100 - _}{___ - 21}$$

- b. air/O_2 ratio =
- 2. Calculate the air-to-oxygen ratio in a 60% venturi mask.

a. air/O₂ ratio =
$$\frac{100 - _}{_}$$
 - 20

b. air/O_2 ratio =

EXERCISE C - VENTURI MASK TOTAL GAS FLOW CALCULATION

The amounts of air and oxygen that are mixed in a venturi to provide a specific oxygen concentration are expressed as a ratio (air:oxgen or a:o). The formula to determine the total gas flow from the device is:

(a x L/min.) + (o x L/min.)

- 1. Calculate total gas flow from a 40% venturi mask with an oxygen flow of 6 L/min.
 - a. the air-to-oxygen ratio for 40% is ____: ____
 - b. oxygen flow = ____ L/min.
 - c. (____ x ____) + (____ x ____) = ____ L/min.
- 2. Calculate total gas flow from a 60% venturi mask with an oxygen flow of 8 L/min.
 - a. the air-to-oxygen ratio for 60% is ____: ____
 - b. oxygen flow = ____L/min.
 - c. (____ x ____) + (____ x ____) = ____ L/min.

EXERCISE D - VENTURI MASK DELIVERED FIO2 MEASUREMENT

- 1. Attach the appropriate oxygen diluter to the 6" flex tube.
- 2. Attach the connecting tubing to the venturi device and oxygen source.
- 3. Attach the oxygen analyzer to the 6" flex tube.
- 4. Adjust flowmeter to prescribed setting.
- 5. Analyze and record FIO2.

Predicted FIO2	O2 flow	Measured FIO2	O2 flow	Measured FIO2
	(L/min.)		(L/min.)	

EXERCISE E - VENTURI MASK TOTAL GAS FLOW MEASUREMENT

- 1. Attach the appropriate oxygen diluter to the 6" flex tube.
- 2. Attach the connecting tubing to the venturi device and oxygen source.
- 3. Attach the volume-measuring device to the 6" flex tube.
- 4. Adjust flowmeter to prescribed setting.
- 5. Turn on volume measuring device. Time for one minute.
- 6. Calculate and record liters per minute.

Predicted	O2 flow	Predicted	Measured	O2 flow	Predicted	Measured
FIO2	(L/min.)	total flow	total flow	(L/min.)	total flow	total flow
		(L/min.)	(L/min.)		(L/min.)	(L/min.)

EXERCISE F – HELIOX THERAPY

Heliox can be given as gas therapy or in conjunction with aerosolized medication therapy. Heliox tanks are usually delivered as 80/20, i.e 80% helium/20% oxygen. Oxygen can be titrated in to raise the FIO2.

With an 80/20 heliox tank, prescribed FiO2 can be mixed according to the following:

To mix:	Heliox flowmeter	Oxygen flowmeter
70% helium/30% oxygen	12 L/min	1.5 L/min
60% helium/40% oxygen	12 L/min	4 L/min

1. With the 80/20 heliox tank in our lab, setup the system to deliver 30% oxygen via nonrebreathing mask.

2. With the 80/20 heliox tank in our lab, setup the system to deliver 40% oxygen via aerosol mask for a continuous medicated treatment.

WORKSHEET

1. Explain the difference between a high-flow and a low-flow oxygen delivery system. Give an example of each.

- 2. Why is the minimum flow rate of 5 L/min recommended for oxygen delivery by mask?
- 3. Calculate the air-to-oxygen ratio and total gas flow for a 24% venturi mask (O2 flow = 12 L/min).
- 4. You observe a patient wearing a nonrebreathing mask and note that the bag completely deflates with each inspiration. What actions, if any, should you take?
- 5. List at least 3 factors that will affect the FiO2 delivered by a low-flow system.
- 6. Complete the following table by calculating or providing the missing parameters.

FiO2	O ₂ Flow Rate	Entrainment Ratio	Total Flow
0.28	8 L/min		
0.40			40 L/min
		5:1	36 L/min
	3 L/min	7:1	
0.45	5 L/min		
0.50	14 L/min		
0.32	5 L/min		

7. Complete the following table.

г

Nasal Cannula

Nasal Cannula				
Liter Flow:				
Estimated FIO2:				
	Before Oxygen Administration	After Oxygen Administration		
Pulse:				
SpO2:				
Respiratory Rate (f):				

Simple Mask

Simple Mask				
Liter Flow:				
Estimated FIO2:				
	Before Oxygen Administration	After Oxygen Administration		
Pulse:				
SpO2:				
Respiratory Rate (f):				

Partial Rebreather Mask

Partial Rebreather Mask			
Liter Flow:			
Estimated FIO2:			
	Before Oxygen Administration	After Oxygen Administration	
Pulse:			
SpO2:			
Respiratory Rate (f):			

Nonrebreathing Mask

Nonrebreathing Mask				
Liter Flow:				
Estimated FIO2:				
	Before Oxygen Administration	After Oxygen Administration		
Pulse:				
SpO2:				
Respiratory Rate (f):				

Liter Flow:		
Estimated FIO2:		
	Before Oxygen Administration	After Oxygen Administration
Pulse:		
SpO2:		
Respiratory Rate (f):		

Venturi Mask