Solving Quadratic Equations by the Quadratic Formula

The quadratic formula will work when trying to solve ANY quadratic equation.

2 musts:

- (1) Must have a quadratic equation (squared term)
- (2) Must be in standard form $(ax^2 + bx + c = 0)$

Quadratic Formula:

The solution to $ax^2 + bx + c = 0$ with $a \neq 0$, is given by the formula

$$x = \frac{-b \pm \sqrt{(b)^2 - 4ac}}{2a}$$

Steps to solve using the quadratic formula:

- 1.) Collect all terms on one side, leaving zero on the other side.
- 2.) Identify a, b, and c. Plug these values into the quadratic formula and evaluate.
- 3.) Check by substituting the solution(s) back into the original equation.

Examples: Solve using the quadratic formula.

a)
$$2x^2 + 2x = 1$$

Solution:

Step 1: gather all terms on one side

$$2x^2 + 2x - 1 = 0$$

Step 2: identify a, b, and c

$$a = 2 \qquad b = 2 \qquad c = -1$$

Plugging into the quadratic equation we have:

$$x = \frac{-(2) \pm \sqrt{(2)^2 - 4(2)(-1)}}{2(2)}$$

A few things to be aware of and watch for:

- (1) Be sure you are dividing the whole right-hand side by the 2a, not just the radical.
- (2) Be sure to put parentheses around the $(b)^2$ term in your calculator because if it is a negative value, it will not square the negative without the parentheses.

Evaluating we have:
$$x = \frac{-(2) \pm \sqrt{(2)^2 - 4(2)(-1)}}{2(2)}$$

$$x=rac{-2\pm\sqrt{12}}{4}$$
 simplify the radical $x=rac{-2\pm2\sqrt{3}}{4}$

 $x=rac{2(-1\pm\sqrt{3})}{4}$ factor out a 2 from the numerator so it can be divided by the 4 $x=rac{-1\pm\sqrt{3}}{2}$

Final Solution:
$$x = \frac{-1 \pm \sqrt{3}}{2}$$

Step 3: Plug in each solution to the original to check your work! Use your calculator help.

b)
$$3x^2 - 2x + 4 = 0$$

Solution:

to

Step 1: The quadratic is already in standard form, so no work here!

Step 2: identify a, b, and c

$$a = 3 \qquad \qquad b = -2 \qquad \qquad c = 4$$

Plugging into the quadratic equation we have:

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(3)(4)}}{2(3)}$$

A few things to be aware of and watch for:

- (1) Be sure you are dividing the whole right-hand side by the 2a, not just the radical.
- (2) Be sure to put parentheses around the $(b)^2$ term in your calculator because if it is a negative value, it will not square the negative without the parentheses.

Evaluating we have:
$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(3)(4)}}{2(3)}$$

$$x=rac{2\pm\sqrt{4-48}}{6}$$
 $x=rac{2\pm\sqrt{-44}}{6}$ simplify the radical

$$x = \frac{2 \pm 2i\sqrt{11}}{6}$$

 $x = \frac{2\pm2i\sqrt{11}}{6}$ $x = \frac{2(1\pm i\sqrt{11})}{6}$ in the numerator, you can factor out a common factor of 2, then divide it with the 6 in the denominator.

$$x = \frac{1 \pm i\sqrt{11}}{3}$$

Final Solution:
$$x = \frac{1 \pm i\sqrt{11}}{3}$$

Step 3: Plug in each solution to the original to check your work! Use your calculator

help.