Sequences and Summation Notation

Infinite Sequence – the sequence has an infinite number of terms.

 $a_1, a_2, a_3, a_4, a_5, \dots a_n, \dots$

Finite Sequence – the sequence has a finite number of terms.

 $a_1,a_2,a_3,a_4,a_5,\ldots a_n$

The first term is denoted a_1 , the second term is a_2 , etc.

Recursive Formula – when the formula defines the terms using previous term(s). a_{n-1} is the previous term, a_{n-2} is the term just before the previous term, etc.

Factorial Notation

If n is a positive integer, the notation n! is the product of all integers from n down to 1.

5! = 5 * 4 * 3 * 2 * 1 = 120 8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 40320Note: 0! = 1

To calculate a factorial (without having to type every number in the calculator)

- 1. Enter the number into the calculator
- 2. Go to your MATH menu
- 3. Scroll over to highlight PRB (probability)
- 4. ! should be one of the choices

Note: Most calculators will not calculate anything bigger than 70!

Summation Notation

 $\sum_{i=1}^{n} (a_i) = a_1 + a_2 + a_3 + a_4 + \dots + a_n$

i is the index of summation, n is the upper limit, 1 is the lower limit

Arithmetic Sequence

A sequence in which each term differs from the preceding term by a constant amount. This constant amount is called the <u>common difference</u>, d.

Examples of Arithmetic Sequences

142, 146, 150, 154, 158,	d = 4
-5, -2, 1, 4, 7,	d = 3
8, 3, -2, -7, -12,	d = -5

Recursive Formula: $a_n = a_{n-1} + d$

General Term of an Arithmetic Sequence: $a_n = a_1 + (n-1)d$

The Sum of the First *n* Terms of an Arithmetic Sequence: $S_n = \frac{n}{2}(a_1 + a_n)$

Geometric Sequence

A sequence in which each term is obtained by multiplying the preceding term by a constant amount. This constant amount is called the <u>common ratio</u>, r.

Examples of Geometric Sequences

1, 5, 25, 125, 625,	r = 5
4, 8, 16, 32, 64,	r = 2
6, -12, 24, -48, 96,	r = -2
$9, -3, 1, -\frac{1}{3}, \frac{1}{9}, \dots$	$r = -\frac{1}{3}$

Recursive Formula: $a_n = a_{n-1}r$

General Term of a Geometric Sequence: $a_n = a_1 r^{n-1}$

The Sum of the First *n* Terms of Geometric Sequence: $S_n = \frac{a_1(1-r^n)}{1-r}$

Geometric Series

A series is an infinite sum. We will use S to designate the series. So we have $S = S_{\infty} = \sum_{i=1}^{\infty} a_i$.

If |r| < 1, r^n will get smaller as n gets bigger. In fact, if n is big enough, r^n is essentially 0. Since we are looking at the case when n is infinity, we can replace r^n with 0. The equation for the sum of a geometric sequence simplifies and we get the equation for a geometric series.

$$S = S_{\infty} = \frac{a_1(1-0)}{1-r} = \frac{a_1}{1-r}$$

$$S = \frac{a_1}{1-r} |\mathsf{f}| |r| < 1$$

Note: If $|r| \ge 1$, then $S = \pm \infty$.