1	
Oxygen Monitoring Devices	
RSPT 1410	
	I
2	
Oxygen Monitoring Devices	
7 Types of Devices	
7 Techniques	
7 Problems	
	1
Oxygen Monitoring	
7 Evaluate patient's status	
7 Assess the effect of oxygen therapy	
7 O2 saturation 7 PaO2	
7 FiO2 requirement	
Determine if changes in patient's therapy is indicated	

Types of Devices Oxygen analyzers **尽** PCO2 measuring system **↗** PO2 measuring system **オ** Transcutaneous electrodes **7** Pulse oximeter Oxygen Analyzers $\ensuremath{\mathbf{7}}$ Used for measuring the oxygen concentration of inspired gases **⋾** 3 types **7** Paramagnetic Æ Electrical **7** Electrochemical **7** Galvanic Polarographic Oxygen Analyzers **7** Paramagnetic **ォ** Included for historical purposes **7** Developed in 1946 by Pauling

Oxygen Analyzers

- 7 The paramagnetic oxygen sensor consists of a cylinder-shaped container inside of which is a small glass dumbbell.
- 7 The dumbbell is filled with an inert gas such as nitrogen and suspended on a taut platinum wire within a non-uniform magnetic field.
- The dumbbell is designed to move freely as it is suspended from the wire.

Oxygen Analyzers

- When a sample gas containing oxygen is sent through the sensor, the oxygen molecules are attracted to the stronger of the two magnetic fields. This causes a displacement of the dumbbell which results in the dumbbell
- 7 The degree of rotation is dependant upon the partial pressure of oxygen and is converted to O2%

	Oxygen Analyzers
∌ Beckman D-2 analyzer	
OX PARTIES PARTIES	Magnets Torsion Wire

	11
	Oxygen Analyzers
Paramagnetic	
Disadvantages	
Cannot be used to measure	gas
Ϡ Sample must be	
∄ It is very delicate	
■ Affected by changes in	

Oxygen Analyzers			
7 Electrical			
Operate on the principle of thermal conductivity and use an electronic device called a ""			
2 parallel wires receive an electrical current from a battery			
7 1 of the wires is the reference wire exposed to room air			
7 The other wire is in the gas sample chamber and exposed to the gas being measured			

Oxygen Analyzers

- **₹** Electrical

 - **7** The change in resistance is detected \rightarrow converted to O2%

Oxygen Analyzers Produces Produces Oxygen Analyzers Can only measure static gases can't be used in the

Oxygen Analyzers

Pelectrochemical
Rely on an oxygen-mediated chemical reaction to produce a flow of current (electrons)

Substituting the second of the sec

Oxygen Analyzers Page Electrochemical – Galvanic A gold electrode & a lead electrode are immersed in a potassium hydroxide bath The gas sample is separated from the KOH bath by a semipermeable membrane made of Teflon Anode (base metal) Gas that contains anygen Lectrolysis (ROI) Lectrolysis

Oxygen Analyzers As O2 diffuses through the membrane into the KOH bath – it reacts with H2O & free electrons from the gold cathode to form hydroxyl ions (OH·) The hydroxyl ions diffuse towards the lead anode forming lead oxide (PbO₂), H2O & free electrons The flow of the electrons produces electrical current in proportion to the O2 concentration that is measured & converted to O2% Electrolyse (NOI) Electrolyse (NOI) Electrolyse (NOI) Electrolyse (NOI) Electrolyse (NOI) Electrolyse (NOI) Electrolyse (NOI)

Oxygen Analyzers Page Electrochemical – Galvanic Example: Hudson Galvanic O2 Analyzer

Oxygen Analyzers

20

- **₹** Electrochemical Polarographic
 - **7** Also use an oxygen-mediated chemical reaction to produce electrical current but do have some differences
 - Contain a platinum cathode & a silver anode immersed in KOH bath
 - **7** Also have a 9-V battery to polarize the silver anode \rightarrow shorter response time

Oxygen Analyzers Pelectrochemical – Polarographic Example: Teledyne

Oxygen Analyzers **★** Electrochemical Analyzers **オ** Advantages gas samples can be analyzed **7** Can be used with flammable gases Used for intermittent or continuous monitoring 23 Oxygen Analyzers **★** Electrochemical Analyzers Disadvantage 7 The chemicals in the fuel cell are the cell "goes dead" and must be replaced - to prolong the fuel cell life, it is important to keep the fuel cell capped so it is not continually exposed to room air **★** Affected by changes in ambient pressure ■ Also affected by ____ Oxygen Analyzers Must be calibrated to ____ ___ and ___ ■ In most cases, FiO2 is measured as close to the patient as possible **■** Documented as either % or FiO2 **7** Example: O2% - 40% or FiO2 - 0.40 **■** Not O2% - 0.40 or FiO2 - 40%

Pulse Oximeters

Pulse Oximeters

Measures the % of oxygen-saturated ____ or % of oxyhemoglobin (oxyHb)

Non-invasive
Performed continuously or intermittently

Utilizes technique called _____

Pulse Oximeters Pulse Oximeters Spectrophotometry Blood sample placed between infrared light source & a light detector using a probe Wrist Light - emitting diode (infrared + red) Floot Floot Floot Floot Ear

Pulse Oximeters

Photodetector measures the amount of _____ light passing through the blood sample

Desaturated Hb absorbs _____ light than saturated Hb

Amount of light passing through is converted to a % reading, i.e the % of Hb carrying O2

Expressed as SpO2

Also measures _____

Pulse Oximeters

Pulse Oximeters

Does not measure Hb level

Inaccurate if: poor blood flow, dark fingernail polish, bright ambient light

Cannot differentiate between Hb carrying O2 and ______

If SpO2 = 95% & COHb = 25%

which is a specific poor blood flow, dark fingernail polish, bright ambient light

for Cannot differentiate between Hb carrying O2 and _______

Pulse Oximeters
7 Normal = ≥% (sea level), ≥% (Amarillo)
Have an good idea of the patients PaO2 if we know the SO2

Blood Gas Analyzers

32

- **Ϡ** Measure PO2, PCO2, pH, HCO3-
 - **★** Arterial blood
 - **オ** Venous blood
 - **ℬ** Capillary blood
 - **Ϡ** Pleural fluid

Transcutaneous Monitors Non-invasive Measure PaO2 and PaCO2 ______ through the skin Utilizes a heated probe sealed to the ______ Used mostly on infants

	J	
35	1	
30		
Paramagnetic gas = a gas that can be changed in position from its rested state with a		
7 For example, if the gas was in a sealed glass tube → you could see it move or change in color when a magnet is		
close to it		
Ϡ Oxygen is the most paramagnetic gas		
<u>back</u>		