Oxygen Monitoring Devices

Types of Devices

Techniques

Problems

Evaluate patient’s status

Assess the effect of oxygen therapy

- O2 saturation
- PaO2
- FiO2 requirement

Determine if changes in patient’s therapy is indicated
Types of Devices

- Oxygen analyzers
- PCO2 measuring system
- PO2 measuring system
- Transcutaneous electrodes
- Pulse oximeter

Oxygen Analyzers

- Used for measuring the oxygen concentration of inspired gases
- 3 types
 - Paramagnetic
 - Electrical
 - Electrochemical
 - Galvanic
 - Polarographic

- Paramagnetic
 - Included for historical purposes
 - Developed in 1946 by Pauling
Oxygen Analyzers

- Paramagnetic

- Uses Pauling Principle or the Principle of Paramagnetism to measure oxygen concentration

- Oxygen is a paramagnetic gas

- If a magnetic field is present, O2 will be attracted to it and its molecules will align themselves with the north-south magnetic flux lines

- Other gases are ________________ by the magnetic field

The paramagnetic oxygen sensor consists of a cylinder-shaped container inside of which is a small glass dumbbell.

- The dumbbell is filled with an inert gas such as nitrogen and suspended on a taut platinum wire within a non-uniform magnetic field.

- The dumbbell is designed to move freely as it is suspended from the wire.

When a sample gas containing oxygen is sent through the sensor, the oxygen molecules are attracted to the stronger of the two magnetic fields. This causes a displacement of the dumbbell which results in the dumbbell ____________.

- The degree of rotation is dependant upon the partial pressure of oxygen and is converted to O2%
Oxygen Analyzers

- Beckman D-2 analyzer

Paramagnetic

- Disadvantages
 - Cannot be used to measure _____________ gas
 - Sample must be ________________
 - It is very delicate
 - Affected by changes in ________________

Electrical

- Operate on the principle of thermal conductivity and use an electronic device called a "___________."
- 2 parallel wires receive an electrical current from a battery
 - 1 of the wires is the reference wire exposed to room air
 - The other wire is in the gas sample chamber and exposed to the gas being measured
Oxygen Analyzers

Electrical

- In the sample chamber – if the O2 concentration is higher than room air → the wire cools → its __________ decreases
- The change in resistance is detected → converted to O2%

Advantages

- Unaffected by changes in ambient ________________

Disadvantages

- Can only measure static gases
- Produces ______________ – can’t be used in the presence of anesthetic gases
Oxygen Analyzers

- Electrochemical
 - Rely on an oxygen-mediated chemical reaction to produce a flow of current (electrons)
 - 2 types
 - Galvanic
 - Polarographic

Oxygen Analyzers

- Electrochemical – Galvanic
 - A gold electrode & a lead electrode are immersed in a potassium hydroxide bath
 - The gas sample is separated from the KOH bath by a semipermeable membrane made of Teflon

As O₂ diffuses through the membrane into the KOH bath – it reacts with H₂O & free electrons from the gold cathode to form hydroxyl ions (OH⁻)

The hydroxyl ions diffuse towards the lead anode forming lead oxide (PbO₂), H₂O & free electrons

The flow of the electrons produces electrical current in proportion to the O₂ concentration that is measured & converted to O₂%
Oxygen Analyzers

- Electrochemical – Galvanic
 - Example: Hudson Galvanic O2 Analyzer

Oxygen Analyzers

- Electrochemical – Polarographic
 - Also use an oxygen-mediated chemical reaction to produce electrical current but do have some differences
 - Contain a platinum cathode & a silver anode immersed in KOH bath
 - Also have a 9-V battery to polarize the silver anode → shorter response time

Oxygen Analyzers

- Electrochemical – Polarographic
 - Example: Teledyne
Oxygen Analyzers

- **Electrochemical Analyzers**
 - **Advantages**
 - Gas samples can be analyzed
 - Can be used with flammable gases
 - Used for intermittent or continuous monitoring
 - **Disadvantages**
 - The chemicals in the fuel cell are used
 - The cell "goes dead" and must be replaced.
 - To prolong the fuel cell life, it is important to keep the fuel cell capped so it is not continually exposed to room air
 - Affected by changes in ambient pressure
 - Also affected by __________

Must be calibrated to _________ and ______% O2

- In most cases, FiO2 is measured as close to the patient as possible

Documented as either % or FiO2

- Example: O2% - 40% or FiO2 - 0.40
- Not O2% - 0.40 or FiO2 – 40%
Pulse Oximeters

- Measures the % of oxygen-saturated ______ or % of oxyhemoglobin (oxyHb)
- Non-invasive
- Performed continuously or intermittently
- Utilizes technique called ______

Pulse Oximeters

- Spectrophotometry
 - Blood sample placed between infrared light source & a light detector using a probe

- Photodetector measures the amount of _____ light passing through the blood sample
- Desaturated Hb absorbs _____ light than saturated Hb
- Amount of light passing through is converted to a % reading, i.e. the % of Hb carrying O2
- Expressed as SpO2
- Also measures ______
Pulse Oximeters

- Does not measure Hb level
- Inaccurate if: poor blood flow, dark fingernail polish, bright ambient light
- Cannot differentiate between Hb carrying O2 and _______

 - If SpO2 = 95% & COHb = 25%

 % of Hb carrying O2 = ________%

Co-Oximeters

- Table-top oximeter = __________________
- Also using spectrophotometry, measures

 - Hb
 - SaO2
 - COHb
 - MetHb
 - Other Hb's
 - Highly accurate
Pulse Oximeters

- Normal = ≥ ____% (sea level), ≥ ____% (Amarillo)
- Have an idea of the patient's PaO2 if we know the SO2

Blood Gas Analyzers

- Measure PO2, PCO2, pH, HCO3-
 - Arterial blood
 - Venous blood
 - Capillary blood
 - Pleural fluid

Transcutaneous Monitors

- Non-invasive
- Measure PaO2 and PaCO2 through the skin
- Utilizes a heated probe sealed to the skin
- Used mostly on infants
Paramagnetic gas = a gas that can be changed in position from its rested state with a ____________.

For example, if the gas was in a sealed glass tube → you could see it move or change in color when a magnet is close to it.

Oxygen is the most paramagnetic gas.