	1	
RSPT 1410		
Humidity & Aerosol Therapy Part 2		
Wilkins: Chapter 32; p. 737-760		
Cairo: Chapter 4, p. 88-109		
Equipment	2	
Equipment		
A is a device that adds molecular water (water vapor) to gas, most		
often by simple evaporation - these devices are used primarily to humidify inspired gases		
 A is is a device that adds particulate water (aerosol) to gas 		
through a process known as nebulization - these devices are used when <i>therapeutic</i>		
amounts of liquid are needed		
	3	
Equipment Principles		
Three variables affect how well a humidifier		
does its job		

Factors Affecting Performance

- Temperature
 - the most important factor affecting humidifier performance
 - the _____ the temperature of a gas, the more water vapor it can hold
 - heated humidifiers always out perform unheated humidifiers
 - unheated humidifiers can actually _____
 the water in the reservoir to 10°C below ambient

Pressure Dry gas release Dry g

6

Factors Affecting Performance

- Surface area
 - refers to the area of contact between the gas and water (
 - the greater the area of contact, the more _____ will occur
 - the two most common ways to increase this interface are
 - bubble diffusion
 - "wick" technology

	7
Factors Affacting Dorformance	
Factors Affecting Performance	
 Surface area (con't) 	
bubble diffusiondirects a stream of gas through an	
diffuser which breaks the stream	
into small bubbles • as the bubbles rise, evaporation	
their water vapor pressure	
the smaller the bubbles, the the gas/liquid interface	
	8
	<u> </u>
Factors Affecting Performance	
Surface area (con't)	
- wick technology	
 uses porous water-absorbent material to increase surface 	
areathe wick draws water into a honeycombed structure by	
the textured surface of this structure increases the gas/	
liquid interface	
	9
	-
Capillary action is defined as a physical phenomenon	
whereby a liquid in a small tube tends to move upward, against the force of gravity; due to both adhesive and surface tension forces.	
	-
<u>back</u>	
	

10 **Factors Affecting Performance** · Contact time a gas remains in - the contact with water, the greater the amount of – gas flow is the primary determinant of contact time - low flows increase contact time; high flows decrease contact time - with bubble humidifiers, the depth of the water also affects this time - the deeper the water, the longer the contact time as bubbles rise to the surface 11 Types of Humidifiers • Three primary types defined by the method used to gas to water - bubble humidifier - passover humidifier - heat & moisture exchanger (HME) • Bubble and passover types may incorporate heating devices, reservoir and feed systems • Design specifications established by the American Society for Testing and Materials 12 Types of Humidifiers · Bubble humidifiers – use an underwater diffuser to break a gas stream into small bubbles - unheated bubble humidifiers are commonly used _ O₂ delivery systems – the goal of these devices is to raise the water vapor content of the gas

Types of Humidifiers

- · Bubble humidifiers
 - depending on brand and liter flow, these devices can provide and absolute humidity of approximate
 mg/L
 - at 22°C (72°F) this represents a relative humidity of 82%, but only 36% body humidity
 - effectiveness _____ with increased gas flow
 - heating is not recommended because condensate can form in the small-bore tubing

14

Types of Humidifiers

- Bubble humidifiers

 - may be purchased either pre-filled (disposable) or non-filled permanent (non-disposable)

Bubble
Humidifier

Pressure relief

Gas inlet
Gas outlet

Humidified
gas

Capilary
tube

Water

Diffuser

Types of Humidifiers

- Passover humidifiers
 - direct gas over a water surface

 - direct gas over a water surrace

 wick-type

 wick is placed upright in a water reservoir surrounded by a heating element

 capillary action continually draws water up from the reservoir, keeping the wick

 as gas enters the chamber it flows around the wick, taking on water vapor

 - gas leaves the chamber fully _

Types of Humidifiers

- Passover humidifiers
 - membrane-type
 - uses a hydrophobic membrane to separate the water from the gas stream
 water vapor molecules can pass through this membrane, but liquid water cannot
 the dry gas passes over this membrane and takes on water vapor

21 Membrane-type Passover Humidifier

22 Types of Humidifiers • Heat & moisture exchangers - a.k.a. the "_ - capture heat and moisture on uses it to warm and humidify the next _ - used almost exclusively on ventilator circuits - three types • simple condenser · hygroscopic condenser hydrophobic condenser 23 Types of Humidifiers · Heat & moisture exchangers - simple condenser • uses a condenser element with high thermal conductivity (metal gauze, parallel metal tubes) • during inhalation, inspired gas • during exhalation, expired water vapor condenses on its surface and ______ it

• during the next inhalation, cool, dry gas is warmed and humidified as it passes over the element • have approximately _ __% efficiency 24 Types of Humidifiers • Heat & moisture exchangers - hygroscopic condenser uses a condenser element with low thermal conductivity (paper, wool, foam) impregnated with a hygroscopic salt • process is very similar to the simple condenser type except that the low thermal conductivity element can retain more heat and the salt helps to capture extra • have approximately ______% efficiency

Types of Humidifiers

- Heat & moisture exchangers
 - hydrophobic condenser
 - uses a water-repellant element with a large surface area and low thermal conductivity
 - this produces a rather large change in temperature which results in ______ water being conserved for the next breath
 - also have approximately ______% efficiency

Hydrophobic Condenser

Expiration

T 10°, RH 100%
AH 8 mg/L

Inspiration

T 20°, RH 50%
AH 9 mg/L

T 30°, RH 100%
AH 30 mg/L

