Equipment

- A _______________ is a device that adds molecular water (water vapor) to gas, most often by simple evaporation - these devices are used primarily to humidify inspired gases
- A _______________ is a device that adds particulate water (aerosol) to gas through a process known as nebulization - these devices are used when therapeutic amounts of liquid are needed

Equipment Principles

- Three variables affect how well a humidifier does its job
 - _______________
 - _______________
 - _______________
Factors Affecting Performance

- Temperature
 - the most important factor affecting humidifier performance
 - the
 - the temperature of a gas, the more water vapor it can hold
 - heated humidifiers always out perform unheated humidifiers
 - unheated humidifiers can actually
 - the water in the reservoir to 10°C below ambient

Effects of a Heated Reservoir

Factors Affecting Performance

- Surface area
 - refers to the area of contact between the gas and water
 - the greater the area of contact, the more
 - the two most common ways to increase this interface are
 - bubble diffusion
 - “wick” technology
Factors Affecting Performance

- Surface area (con’t)
 - bubble diffusion
 - directs a stream of gas through an __________ diffuser which breaks the stream into small bubbles
 - as the bubbles rise, evaporation __________ their water vapor pressure
 - the smaller the bubbles, the __________ the gas/liquid interface

- wick technology
 - uses porous water-absorbent material to increase surface area
 - the wick draws water into a honeycombed structure by __________
 - the textured surface of this structure increases the gas/liquid interface

Capillary action is defined as a physical phenomenon whereby a liquid in a small tube tends to move upward, against the force of gravity; due to both adhesive and surface tension forces.
Factors Affecting Performance

- Contact time
 - the ____________ a gas remains in contact with water, the greater the amount of evaporation
 - gas flow is the primary determinant of contact time - low flows increase contact time; high flows decrease contact time
 - with bubble humidifiers, the depth of the water also affects this time - the deeper the water, the longer the contact time as bubbles rise to the surface

Types of Humidifiers

- Three primary types defined by the method used to ____________ gas to water
 - bubble humidifier
 - passover humidifier
 - heat & moisture exchanger (HME)
- Bubble and passover types may incorporate heating devices, reservoir and feed systems
- Design specifications established by the American Society for Testing and Materials

Types of Humidifiers

- Bubble humidifiers
 - use an underwater diffuser to break a gas stream into small bubbles
 - unheated bubble humidifiers are commonly used with ____________ O₂ delivery systems
 - the goal of these devices is to raise the water vapor content of the gas
Types of Humidifiers

- Bubble humidifiers
 - depending on brand and liter flow, these devices can provide and absolute humidity of approximate ______ mg/L
 - at 22°C (72°F) this represents a relative humidity of 82%, but only 36% body humidity
 - effectiveness ________________ with increased gas flow
 - heating is not recommended because condensate can form in the small-bore tubing

Types of Humidifiers

- Bubble humidifiers
 - typically incorporate a 2 psi pressure relief valve, which should provide at least an __________ alarm and which should return to normal position when the problem is corrected
 - may be purchased either pre-filled (disposable) or non-filled permanent (non-disposable)
Types of Humidifiers

- Passover humidifiers
 - direct gas over a water surface
 - wick-type
 - wick is placed upright in a water reservoir surrounded by a heating element
 - capillary action continually draws water up from the reservoir, keeping the wick
 - as gas enters the chamber it flows around the wick, taking on water vapor
 - gas leaves the chamber fully ____________________

 Wick-type Passover Humidifier
Types of Humidifiers

• Passover humidifiers
 – membrane-type
 • uses a hydrophobic membrane to separate the water from the gas stream
 • water vapor molecules can pass through this membrane, but liquid water cannot
 • the dry gas passes over this membrane and takes on water vapor
Types of Humidifiers

- **Heat & moisture exchangers**
 - a.k.a. the “__________________”
 - capture heat and moisture on ____________ uses it to warm and humidify the next ____________
 - used almost exclusively on ventilator circuits
 - three types
 - simple condenser
 - hygroscopic condenser
 - hydrophobic condenser

Types of Humidifiers

- **Heat & moisture exchangers**
 - simple condenser
 - uses a condenser element with high thermal conductivity (metal gauze, parallel metal tubes)
 - during inhalation, inspired gas ____________ the element
 - during exhalation, expired water vapor condenses on its surface and ____________ it
 - during the next inhalation, cool, dry gas is warmed and humidified as it passes over the element
 - have approximately _______% efficiency

Types of Humidifiers

- **Heat & moisture exchangers**
 - hygroscopic condenser
 - uses a condenser element with low thermal conductivity (paper, wool, foam) impregnated with a hygroscopic salt
 - process is very similar to the simple condenser type except that the low thermal conductivity element can retain more heat and the salt helps to capture extra moisture
 - have approximately _______% efficiency
Types of Humidifiers

- Heat & moisture exchangers
 - hydrophobic condenser
 - uses a water-repellant element with a large surface area and low thermal conductivity
 - this produces a rather large change in temperature which results in ________ water being conserved for the next breath
 - also have approximately ________% efficiency
Typical HMEs