Unit 1 Medical Gas Storage

GOAL

On completion of this unit, the student should have an understanding of gas storage methods, their usage, safety systems and handling techniques.

COMPETENCIES

- 1. Identify medical gas cylinders by size, color and USP labeling.
- 2. Inspect medical gas cylinders and note the meaning of all markings.
- 3. Locate and/or describe the safety systems on available cylinders.
- 4. Demonstrate proper transport techniques for available cylinders.
- 5. Calculate cylinder contents in liters and L/psig.
- 6. Calculate how long a cylinder will last given a specific cylinder size, pressure, gas and flow.
- 7. Identify components of a bulk liquid oxygen (LOX) system.
- 8. Describe the operating principle of an LOX system.

EQUIPMENT

- 1. various medical gas cylinders
- 2. cylinder hand trucks for E and K cylinders

EXERCISE A – CYLINDER MARKINGS

- 1. Label the following cylinder markings on Fig. 1.
 - a. approved specifications
 - b. service pressure
 - c. serial number
 - d. owner's stamp
 - e. manufacturer's stamp
 - f. first hydrostatic test date
 - g. subsequent hydrostatic test dates
 - h. last hydrostatic test date
 - inspector's stamp

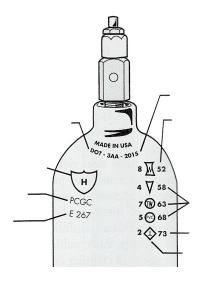


Fig. 1

EXERCISE B - CYLINDER EXAMINATION/DESCRIPTION

1. Complete the following table.

	Cylinder	Serial		Service	Filling	Last Hydrostatic	Volume
Gas	Size	Number	Color	Pressure	Pressure	Test Date	(ft ³ & liters)

EXERCISE C - CYLINDER SAFETY SYSTEMS

1. Complete the following table.

		Pin Index	Left or Right	
		Hole	Hand	F/F Disc
Gas	Cylinder Size	Positions	Threads	(Yes/No)

EXERCISE D – TRANSPORTING CYLINDERS

- 1. Transport a K cylinder without a hand truck according to instructions given in class.
- 2. Transport a K cylinder with a hand truck according to instructions given in class.
- 3. Transport an E cylinder with a hand truck according to instructions given in class.

EXERCISE E – CALCULATING CYLINDER CONTENTS AND DURATION

Note: While all cylinders containing oxygen are filled to 2200 psig, a full H cylinder contains 244 ft³ of oxygen and a full E cylinder contains 22 ft³ of oxygen. The conversion of ft³ to liters is ft³ x 28.3. (Information provided in this unit applies only to cylinders that are completely filled with gas. Some cylinders, such as those containing pure carbon dioxide, contain a mixture of gas and liquid.)

1. Determine the factor (L/psig) for an **E cylinder** of oxygen.

factor =
$$\frac{ft^3 \text{ in full cylinder x L/ft}^3}{psig \text{ in cylinder}}$$

a. factor =
$$\frac{\text{ft}^3 \text{ x} \underline{\qquad} \text{L/ft}^3}{\underline{\qquad} \text{psig}}$$

2. Determine the factor (L/psig) for an **H cylinder** of oxygen.

factor =
$$\frac{ft^3 \text{ in full cylinder x L/ft}^3}{psig \text{ in cylinder}}$$

a. factor =
$$\frac{\text{ft}^3 \text{ x} \underline{\qquad} \text{L/ft}^3}{\underline{\qquad} \text{psig}}$$

b. factor =
$$\frac{L}{psig}$$

3. Determine how long a full **E cylinder** of oxygen running at 3 L/min. will be safe to use.

Note: Since cylinders containing less than 500 psig should not be used, subtract 500 psig from the manometer reading.

minutes of use =
$$\frac{\text{(psig - 500) x factor}}{\text{flow in L/min}}$$

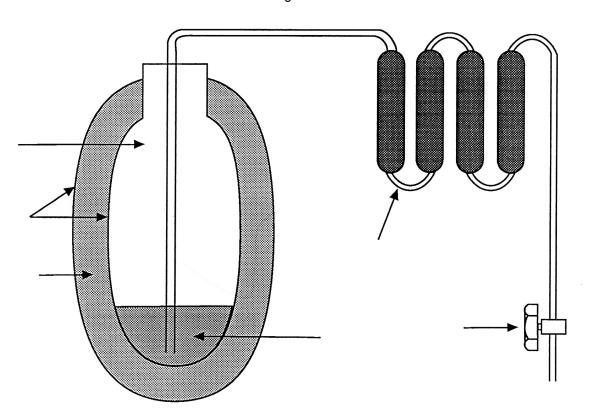
a. minutes of use =
$$\frac{\text{(}_{\text{}}\text{psig - 500) x }\text{}_{\text{}}\text{L/min}}{\text{L/min}}$$

4. Determine how long a full **H cylinder** of oxygen running at 14 L/min. will be safe to use.

Note: Since cylinders containing less than 500 psig should not be used, subtract 500 psig from the manometer reading.

minutes of use =
$$\frac{\text{(psig - 500) x factor}}{\text{flow in L/min}}$$

a. minutes of use =
$$\frac{\text{(}_{\text{}} \text{psig - 500) x } \text{}_{\text{}} \text{L/psig}}{\text{L/min}}$$


5. Determine how long the following oxygen cylinders will be safe to use.

Gas	Cylinder Size	Cylinder Pressure	Flow (L/min)	Minutes of Use
02	E	2200	3	
02	E	1000	4	
02	Н	1900	12	
02	Н	850	10	

EXERCISE F - LIQUID OXYGEN SYSTEMS

- 1. Label the following LOX system components on Fig. 2.
 - a. liquid oxygen
 - b. gaseous oxygen
 - c. near vacuum
 - d. insulation
 - e. vaporizers
 - f. reducing valve

Fig. 2

WORKSHEET

1. Complete the following table.

Gas	Cylinder Size	Color	Filling Pressure (psig)	Volume (ft ³)
O2	E			
O2	Н			
CO ₂	Н			
CO2/O2	Е			
CO2/O2	Н			
He	Е			
He/O2	Е			
He/O2	Н			
N2O	Е			
N2O	Н			

List and briefly describe four cylinder safety system	2.	List and	briefly	describe	four cy	ılinder	safet	y sy	stem
---	----	----------	---------	----------	---------	---------	-------	------	------

Describe the proper procedure in transporting gas cylinders by han	na truck.
--	-----------

6. Describe the operating principle of an LOX system.

^{4.} An E cylinder of oxygen containing 1950 psig is connected to a flowmeter running at 5 L/min. How long will this cylinder be safe to use?

^{5.} An H cylinder of oxygen containing 1400 psig is connected to a flowmeter running at 8 L/min. How long will this cylinder be safe to use?