KEYS TO UNDERSTANDING OXYGEN AND HEMODYNAMIC INDICES

TOTAL OXYGEN DELIVERY (ml O2/min.)

$$D_{02} = \dot{Q}_T x (Ca_{02} x 10)$$

where \dot{Q}_T is total cardiac output, CaO2 is systemic arterial content, the factor 10 is used to convert CaO₂ to mI O2/L blood

ARTERIAL-VENOUS OXYGEN CONTENT DIFFERENCE (vol%)

$$C(a - \overline{v})_{O_2} = Ca_{O_2} - C\overline{v}_{O_2}$$

where CaO2 is systemic arterial O2 content, and $C\overline{\nu}_{\text{O2}}$ is mixed venous O2 content

OXYGEN CONSUMPTION (ml O2/min)

$$\dot{V}_{O_2} = \dot{Q}_T[C(a - \overline{v})_{O_2} \times 10]$$

where \dot{Q}_T is the total cardiac, $C(a - \overline{v})_{O_2}$ is the arterial-venous oxygen content difference, the factor 10 is used to convert $C(a - \overline{v})_{O_2}$ to mI O2/L

OXYGEN EXTRACTION RATIO

$$O_2ER = \frac{Ca_{O_2} - C\overline{V}_{O_2}}{Ca_{O_2}}$$

where CaO₂ is systemic arterial O₂ content, and $C\overline{\nu}_{O_2}$ is mixed venous O₂ content

CARDIAC OUTPUT (L/min)

Fick Equation
$$\dot{Q}_T = \frac{\dot{V}_{O_2}}{(Ca_{O_2} - C\overline{V}_{O_2}) \times 10}$$

where $\dot{V}_{\rm O_2}$ is oxygen consumption in ml/min, where CaO₂ is systemic arterial O2 content, and $C\overline{v}_{\rm O_2}$ is mixed venous O2 content (ml/L)

SHUNT FRACTION (%)

$$\frac{\dot{Q}_{S}}{\dot{Q}_{T}} = \frac{Cc_{O_{2}} - Ca_{O_{2}}}{Cc_{O_{2}} - C\overline{v}_{O_{2}}}$$

where CcO2 is pulmonary capillary O2 content, CaO2 is systemic arterial O2 content, and $C\overline{\nu}_{\text{O2}}$ is mixed venous O2 content