Flow-Triggering

- Trigger = the variable that causes the vent to begin the inspiratory phase
- Common triggers
 - 1-
 - 2-
 - 3-
- Effort required to trigger =

Flow-Triggering

Goal -
Minimal effort required by the patient to trigger inspiration, i.e. make the vent as sensitive to patient effort as possible
Flow-Triggering

- Flow-triggering is available on the Bennett 7200, Hamilton Galileo, Servo 300, Drager, Bear Cub, etc.

How Does It Work?

Ventilator Differences

Bennett 7200

Base Flow: variable 0 - 20 lpm
Flow Sensitivity: variable 1 - 1/2 base flow
Ventilator Differences

Servo 300

Base Flow: preset
Flow Sensitivity: adult 2 lpm
pedi 1 lpm
neo .5 lpm

Effects of Flow-Triggering

patient insp effort → fresh gas immediately
available to patient → ↓ delay time
between insp effort & supply of gas
↓

Modes - Pressure

- Began with IPPB treatment
- Fell out of use for CMV
- Returned with new technology
- PCV, PSV, PRVC, PCIRV
Modes - Pressure

- Remember - volume ventilation:
 - operator sets volume
 - vol delivered until preset vol or time
 - press generated prop. to C_L, R_{AW}

- When set V, F \rightarrow sets T_I \Rightarrow press varies
- When set V, T_I \rightarrow sets F

Important to remember!

If patient flow demand $>$ set flow

"flow starvation"

$\uparrow WOB$

Modes - Pressure

Pressure ventilation

operator sets pressure

volume varies with C_L, R_{AW}
Modes - Pressure

If patient “fights” vent, splints pain, $C_L \downarrow$ and/or $R_{AW} \uparrow$

Modes - Pressure

- Time or flow-cycled
- Pressure-limited
- Set press reached quickly & maintained t/o inspiratory time
- Vent delivers whatever flow is necessary to maintain press & meet patient demand

The most significant difference between volume & pressure-based ventilation is how the flow is delivered!
PCV vs. PSV

<table>
<thead>
<tr>
<th></th>
<th>PCV</th>
<th>PSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycled</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>Limited</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>PEEP</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Set Rate</td>
<td>yes (AC)</td>
<td>no</td>
</tr>
</tbody>
</table>

Clinical Advantages of PCV

- Little published on optimal flow pattern
- Evidence suggests decelerating flow pattern:
 - improves gas distribution in lungs allowing ventilation with same V_T but lower PIP
 - increases patient comfort when flow responsive to demand
① PV Reduces V/Q Mismatch

- Difficult to ventilate if C_L, R_{AW} differ from one lung region to another
- Some areas over-ventilated, some under-ventilated
- Airways with $\uparrow R_{AW}$ take longer to receive V_T

② PV Reduces V/Q Mismatch

With PV, gas flow is high early in insp \rightarrow flow reaches small airways early \rightarrow allows more time for gas to be distributed according to regional C_L & R_{AW}

as press gradient \downarrow \rightarrow flow slows \rightarrow laminar flow when gas enters small airways

\downarrow better gas distribution (\downarrow V/Q mismatch)

② PV Optimizes T₁

- By observing flow pattern, T₁ can be optimized

[Graph showing flow over time]
PV Matches Flow with Patient Demand

With volume ventilation, sometimes difficult to match vent flow to patient demand → patient/vent asynchrony

Use of PS helps only on spontaneous breaths
- Increasing flow rate > demand causes turbulent flow → PIP ↑, hit press limit, risk of barotrauma

Use of pressure ventilation with decelerating flows matches flow rate to patient demand
Remember!

- **PCV** - \(V_T\) delivered varies with:
 - \(C_L\)
 - \(R_{AW}\)
 - Set pressure
 - \(T_i\)
 - PEEP level

Remember!

- **PSV** - \(V_T\) delivered varies with:
 - \(C_L\)
 - \(R_{AW}\)
 - Set pressure
 - Patient effort

Primary Indication for PV

- **ARDS** in patients that volume ventilation with PEEP does not seem to be working:
 - \(FIO_2\) 1.0
 - PIP \(\geq 50\) cmH\(_2\)O
 - PEEP \(\geq 15\) cmH\(_2\)O
 - RR \(\geq 16\)/min
 - decreasing PaO\(_2\) and \(C_L\)
Initial Settings

- **PIP** 1/2 - 3/4 previous PIP
 - **I:E** - 1:1 to 1:2

PCIRV

- Primary use - ARDS where $C_L \downarrow \downarrow$
- Lungs empty very quickly so can use short T_E
- Patients sedated and paralyzed
- 2:1, 3:1, 4:1, etc.

PCIRV

- **Results** -
 - oxygenation improves
 - gas exchange improves
 - PIP decreases (↓ risk of barotrauma & CV side-effects)
 - decreases need for PEEP
 - MAP increases
 - can cause auto-PEEP
Monitoring PCIRV

<table>
<thead>
<tr>
<th>VT</th>
<th>SpO₂</th>
<th>CVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>ABG</td>
<td>PAP</td>
</tr>
<tr>
<td>VE</td>
<td>HR</td>
<td>PCWP</td>
</tr>
<tr>
<td>PIP</td>
<td>UO</td>
<td>PVR</td>
</tr>
<tr>
<td>MAP</td>
<td>BP</td>
<td>PpCO₂</td>
</tr>
<tr>
<td>Cl</td>
<td>QT</td>
<td>P(ET)CO₂</td>
</tr>
<tr>
<td>waveforms</td>
<td>PEEP</td>
<td>auto-PEEP</td>
</tr>
</tbody>
</table>

PRVC/APV

- Pressure Regulated Volume Control/Adaptive Pressure Ventilation
- PC with control over volume
- Assist-control
- Available on Servo 300
 (PRVC)/Hamilton Galileo (APV)

PRVC/APV

- Set RR, T₁, target VT
- Breath give at minimal pressure
- Exhaled VT compared to target VT
- Pressure automatically adjusted to achieve target VT (breath to breath)
- Set Pressure Limit high enough
S1 Advanced Concepts

<table>
<thead>
<tr>
<th>PRVC/APV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantage - Guaranteed of V_T with the least amount of pressure to deliver that volume</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VS</th>
</tr>
</thead>
</table>
| - Volume Support (Servo 300)
- Automatic Pressure Support
- Works like PRVC/APV
- Spontaneous breathing mode (no rate set)
- Set target V_T, Pressure Limit |

<table>
<thead>
<tr>
<th>VS</th>
</tr>
</thead>
</table>
| **Advantage** - automatic weaning
 - as patient assumes more of the work of breathing \rightarrow reduce target volume to 5-7 ml/kg
 - apnea - vent switches to PRVC
 - when no apnea, spont V_T 5-7ml/kg,
 $PS \leq 8$ cmH$_2$O \rightarrow extubate |
Modes - Review

<table>
<thead>
<tr>
<th>Mode</th>
<th>Trigger</th>
<th>Cycled</th>
<th>PEEP</th>
<th>Limited</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>T, Pt</td>
<td>V, T</td>
<td>yes</td>
<td>P</td>
</tr>
<tr>
<td>PC</td>
<td>T, Pt</td>
<td>T</td>
<td>yes</td>
<td>P</td>
</tr>
<tr>
<td>SIMV ()</td>
<td>T, Pt</td>
<td>V, T</td>
<td>yes</td>
<td>P</td>
</tr>
<tr>
<td>SIMV ()</td>
<td>T, Pt</td>
<td>T</td>
<td>yes</td>
<td>P</td>
</tr>
<tr>
<td>PRVC/APV</td>
<td>T, Pt</td>
<td>T</td>
<td>yes</td>
<td>P</td>
</tr>
<tr>
<td>PS</td>
<td>Pt</td>
<td>F</td>
<td>yes</td>
<td>P</td>
</tr>
<tr>
<td>CPAP</td>
<td>Pt Pt</td>
<td>yes</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

AutoPEEP

- Intrinsic PEEP
- Unintended PEEP
- Inadvertent PEEP
- Occult PEEP

AutoPEEP

- PEEP that develops when a new breath is delivered before expiration has ended
- Air-trapping, breath-stacking
- \(\text{Cause} = \text{expiratory time is too short} \)

\[WHY? \]
AutoPEEP

- Why is T_e too short?
 - COPD
 - $V_e > 10$ lpm
 - small ETT
 - $C_L \uparrow$
 - RR \uparrow
 - insp flow rate slow
 - large V_T

Complications of AutoPEEP

1. *Increased WOB due to air-trapping* (impairs respiratory muscle function)

Complications of AutoPEEP

2. *Decreased venous return*

3. *Barotrauma*
Complications of AutoPEEP

- Auto-PEEP can artificially look like LVF:

- But if give positive inotropic agents, diuretics → condition will get worse

Detecting Auto-PEEP

- Auto-PEEP can’t be seen on pressure manometer
- If monitoring digital V_{TE} - transient reduction in volume, then lung volume stabilizes

Detecting AutoPEEP

- Best way =

```plaintext
Graphic Wave Forms
```

15
Other - AutoPEEP

- Patient may not be able to trigger vent (neg. pressure trigger)
 - must 1st pull off autoPEEP, the pull sensitivity → Pt/Vent asynchrony; ↑ WOB
- C_3 calculation must include autoPEEP

Decrease AutoPEEP Effects

- Increase T_E
 - ↑ flows → ↓ T_i
 - ↓ V_T
 - ↓ RR

Decrease AutoPEEP Effects

- Decrease R_{AW}
 - secretion removal
 - bronchodilators
 - ↑ ETT size
Decrease AutoPEEP Effects

- Permissive hypercapnia
- Add PEEP (85% of autoPEEP)

Benefits of AutoPEEP

- AutoPEEP can improve oxygenation when using PCIRV