

Flow-Triggering

- Trigger = the variable that causes the vent to begin the inspiratory phase
- Common triggers
 - · 1-
 - · 2-
 - · 3-
- Effort required to trigger =

Flow-Triggering

2

3

Goal -

Minimal effort required by the patient to trigger inspiration, i.e. make the vent as sensitive to patient effort as possible ↓

Ventilator Differences

Bennett 7200

Base Flow: variable 0 - 20 lpm Flow Sensitivity: variable 1 - 1/2 base flow

6

Servo 300		
Base Flow: preset		
Flow Sensitivity:	adult	2 lpm
	pedi	1 lpm
	neo	.5 lpm

Effects of Flow-Triggering

patient insp effort \rightarrow fresh gas *immediately* available to patient $\rightarrow \downarrow$ delay time between insp effort & supply of gas \Downarrow

8

9

Modes - Pressure

- Began with IPPB treatment
- Fell out of use for CMV
- Returned with new technology
- PCV, PSV, PRVC, PCIRV

Modes - Pressure Important to remember! If patient flow demand > set flow ↓ `flow starvation" ↓ ↑ WOB

Modes - Pressure

11

12

Pressure ventilation \downarrow operator sets pressure \downarrow volume varies with C_L, R_{AW} If patient "fights" vent, splints pain, C_L \downarrow and/or R_{AW} \uparrow \downarrow

13

14

15

Modes - Pressure

Modes - Pressure

- Time or flow-cycled
- Pressure-limited
- Set press reached quickly & maintained t/o inspiratory time
- Vent delivers whatever flow is necessary to maintain press & meet patient demand

Modes - Pressure

The most significant difference between volume & pressure-based ventilation is how the flow is delivered!

	PCV	PSV
Cycled	Т	F
Limited	Р	Р
PEEP	yes	yes
Set Rate	yes (AC)	no

Р	CV vs. PSV	Ι
	PCV	PSV
Set Rate	yes PCV (C) PCV (AC) SIMV (PC)	no Patient has control over RR, T _I , flow, V _T
	SIMV (PC)+PS PCIRV	V_{T} depends on ΔP , pt. effort, C_{L} , R_{AW}

- Little published on optimal flow pattern
- Evidence suggests decelerating flow pattern:
 - $\cdot\,$ improves gas distribution in lungs allowing ventilation with same V $_{\rm T}$ but lower PIP

18

• increases patient comfort when flow responsive to demand

19

 Airways with ↑ R_{AW} take longer to receive V_T

③ PV Matches Flow with Patient Demand With volume ventilation, sometimes difficult to match vent flow to patient demand → patient/vent asynchrony ↓

PV Matches Flow with Patient Demand

- Use of PS helps only on spontaneous breaths
- Increasing flow rate > demand causes turbulent flow → PIP ↑, hit press limit, risk of barotrauma

PV Matches Flow with Patient Demand

23

24

Use of pressure ventilation with decelerating flows matches flow rate to patient demand ↓

Primary Indication for PV

 ARDS in patients that volume ventilation with PEEP does not seem to be working:

27

- $\cdot F_{I}O_{2}1.0$
- $\cdot \ PIP \geq 50 \ cmH_2O$
- $\cdot \ \ PEEP \geq 15 \ cmH_2O$
- $\cdot \ RR \geq 16/min$
- $\cdot \,$ decreasing PaO_2 and C_{L}

PCIRV

- Primary use ARDS where $C_L \downarrow \downarrow$
- Lungs empty very quickly so can use short T_E
- Patients sedated and paralyzed
- 2:1, 3:1, 4:1, etc.

PCIRV

29

30

Results -

- $\cdot \,$ oxygenation improves
- · gas exchange improves
- PIP decreases (↓ risk of barotrauma & CV side-effects)
- · decreases need for PEEP
- · MAP increases
- $\cdot\,$ can cause auto-PEEP

V _T	SpO_2	CVP
RR	ABG	PAP
V _E	HR	PCWP
PIP	UO	PVR
MAP	BP	P _{ET} CO ₂
CL	QT	P _(a-ET) CO ₂
waveforms	PEEP	auto-PEEI

PRVC/APV

- Pressure Regulated Volume Control/Adaptive Pressure Ventilation
- PC with control over volume
- Assist-control
- Available on Servo 300 (PRVC)/Hamilton Galileo (APV)

32

33

PRVC/APV

- Set RR, T_I , target V_T
- Breath give at minimal pressure
- Exhaled V_T compared to target V_T
- Pressure automatically adjusted to achieve target V_T (breath to breath)
- Set Pressure Limit high enough

PRVC/APV

VS

- Volume Support (Servo 300)
- Automatic Pressure Support
- Works like PRVC/APV
- Spontaneous breathing mode (no rate set)
- Set target V_T, Pressure Limit

35

36

34

VS

- Advantage automatic weaning

 as patient assumes more of the work
 of breathing → reduce target volume
 - to 5-7 ml/kg
 - $\cdot\,$ apnea vent switches to PRVC
 - · when no apnea, spont V_T 5-7 ml/kg, PS ≤ 8 cmH₂O → extubate

Mada	Tuinan	Curled	PEEP	Linder
Mode	Trigger	Cycled	PEEP	Limited
AC	T, Pt	V, T	yes	F
РС	T, Pt	Т	yes	Р
SIMV (v)	T, Pt	V, T	yes	F
SIMV (p)	T, Pt	Т	yes	Р
PRVC/APV	T, Pt	Т	yes	Р
PS	Pt	F	yes	Р
CPAP	Pt	Pt	yes	Р

AutoPEEP

- Intrinsic PEEP
- Unintended PEEP
- Inadvertent PEEPOccult PEEP

38

39

AutoPEEP

- PEEP that develops when a new breath is delivered before expiration has ended
- Air-trapping, breath-stacking
- Cause = expiratory time is too short
 ↓

WHY?

Complications of AutoPEEP

 Increased WOB due to air-trapping
 (impairs respiratory muscle function)

Complications of AutoPEEP

41

42

2. Decreased venous return ↓

3. Barotrauma

- Auto-PEEP can artificially look like LVF:
- But if give positive inotropic agents, diuretics → condition will get worse

43

44

Detecting Auto-PEEP

- Auto-PEEP can't be seen on pressure manometer
- If monitoring digital V_{TE} transient reduction in volume, then lung volume stabilizes

Benefits of AutoPEEP

• AutoPEEP can improve oxygenation when using PCIRV

50