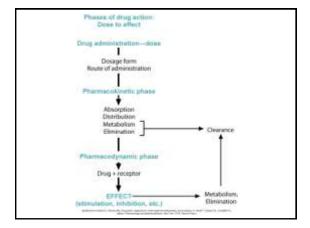
RSPT 2217

Principles of Drug Action


Part 2: The Pharmacokinetic Phase

Gardenhire

Chapter 2; p. 14-25

From the Text

- Common Pathways for Drug Metabolism
 - Box 2-3; page 18
- Plasma Half-lives of Common Drugs
 - Table 2-4; page20
- Factors Increasing the L/T Ratio
 - Box 2-4; page 24

Pharmacokinetic Phase

This phase describes the time course and disposition of a drug in the body, based on its absorption, distribution, metabolism and elimination.

Definitions

- Pharmacokinetics:
 - _
- Pharmacodynamics

-

- .

Absorption

Absorption

- For a drug to be absorbed and used by the body, it must first pass through various anatomical barriers
- For example, an oral dosed drug must first reach the epithelial lining of the stomach or intestine, traverse the lipid membrane barrier of the cells - only then can it be absorbed into the blood for distribution

Absorption

- Inhaled drugs have a similar path

 - _
 - _
 - _

Absorption

- Drugs traverse these barriers by various mechanisms
 - _
- In general, drugs must be sufficiently watersoluble to reach a cell membrane and sufficiently lipid-soluble to diffuse across the cell (lipid) barrier

Absorption

- · Aqueous diffusion
 - occurs in
 - diffusion is by
 - small pore size
 - most drugs pass into capillaries

Absorption

- · Lipid diffusion
 - to diffuse across a lipid layer, a drug must be able to dissolve in a lipid substance
 - another factor that affects lipid solubility
 - · lipid insoluble
 - lipid soluble drugs
 - diffusion across cell membranes

Absorption

- Examples
 - thiopental, a barbiturate, is poorly ionized in the bloodstream and will diffuse across cell membranes into the the brain, producing sedation, sleep or anesthesia
 - tubocurarine, a paralyzing agent, is a fully ionized compound which will not reach the brain - a patient paralyzed with tubocurarine cannot move at all, but is fully awake

Absorption

- The degree of ionization of drugs that are weak acids or weak bases is dependent on
 - the drug's pKa
 - the ambient pH which varies
 - whether the drug is a weak acid or base
 - · weak acids
 - · weak bases

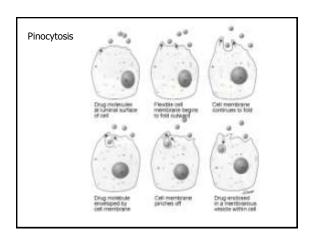
Absorption

- Examples
 - ipratropium bromide (Atrovent) has no capacity for reversible binding of H⁺ ions and is permanently positively charged; therefore it is not lipid soluble and does not absorb well from the mouth or lungs advantage: few, if any, systemic effects/side effects
 - atropine can give up H+ and become nonionized increasing its absorption and distribution disadvantage: increased occurrence of side effects

Absorption

- Examples
 - acetylsalicylic acid (aspirin) has a pKa of 3.0 and is 9% ionized at a pH of 2 and 91% ionized at a pH of 4 meaning is is well absorbed from the gastric lining, not so well absorbed from the intestinal tract

Absorption


- In summary
 - consider pKa a reference baseline
 - for a weak acid, there is less ionization in an acidic environment
 - for a weak base, there is more ionization in an acidic environment
- Key principle is: cell membranes are more permeable to the nonionized form of a drug than to the ionized form

Absorption

- Carrier-mediated (facilitated) transport
 - carrier molecules
 - unlike aqueous diffusion and lipid diffusion
 - since it does not depend on a concentration gradient

Absorption

- Pinocytosis (endocytosis/exocytosis)
 - describes the incorporation of a substance into a cell
 - allows translocation across a membrane barrier

Absorption

- Factors affecting absorption
 - primary factor
 - IV offers fastest onset of action
 - · oral offers slowest onset of action
 - · aerosol is somewhere in between

Absorption

- generally, a trade-off exists
- bioavailability

Absorption

- absorption is also affected by
 - •
 - .

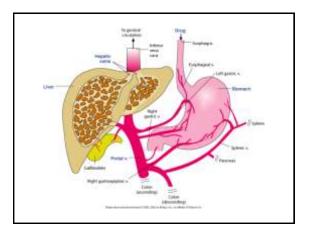
Distribution

Distribution

- Drug distribution is the process by which a drug is transported to its sites of action, elimination and storage
 - _
- Plasma concentration is determined by distribution, absorption and elimination

Metabolism

Metabolism


- Major site of drug metabolism is the liver
 - contains microsomal enzymes
 - metabolites

Metabolism

- Enzyme induction
 - chronic administration or abuse of drugs that are metabolized by enzymes can increase or decrease enzyme levels - this can affect drug dosages
 - example rifampin
 - dosages of affected drugs

Metabolism

- First-pass effect
 - when a drug is given orally
 - if the drug is metabolized by liver enzymes

Metabolism

 solution is to increase the oral dose or administer via routes that circumvent this first-pass metabolism e.g.

injection transdermal buccal rectal sublingual inhalational

 these routes allow the drug to be distributed throughout the body before being circulated through the liver

Elimination

Elimination

- Primary site of drug excretion is the kidney
 - -
- Function of both the liver and kidneys

Elimination

- Clearance
 - a measure of the body's ability to rid itself of a drug
 - usually expressed as total systemic clearance or plasma clearance
 - plasma clearance is arguably theoretical at best, but could be used to help define a maintenance dose

Elimination

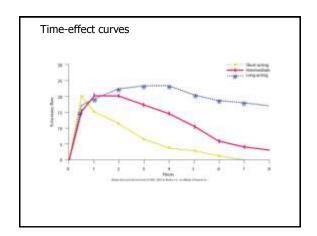
- · Maintenance dose
 - To achieve constant level
 - Many drugs start with a loading dose
 - Subsequent administration
 - Maintenance doses depend on several factors and must be carefully titrated

Elimination

- Plasma half-life (T_{1/2})
 - $-T_{1/2}$
 - may be more important in terms of understanding how quickly a drug can accumulate and reach a steady-state plasma level
 - drugs with a short T_{1/2}
 - drugs with a long $T_{1/2}$

Elimination

- the whole concept of steady-state plasma levels is important because it helps to decrease the peaks and valleys of a drug's effect
- one method often employed to decrease these peaks and valleys is to administer a sustained-release form of a drug



Elimination

- with inhaled aerosol bronchodilators, the $T_{1/2}$ is measured by the effect on peak expiratory flow rates (PEF), or by the effect on the forced expiratory volume in the first second of expiration (FEV $_1$)
 - example pre-bronchodilator PEF = 30 L/min and maximum post-bronchodilator PEF = 60 L/min, then the $T_{\rm 1/2}$ would be the time required for the PEF to drop to 45 L/min
 - since the total increase = 30 L/min, the $T_{1/2}$ represents the time it takes to lose one half of that increase, or 15 L/min

Elimination

- with inhaled aerosol drugs, it is also important to look at time-effect curves
- these curves show
- useful when determining how a drug will be used
 - is rapid onset required? ("rescue drug")
 - is a longer duration desirable? (maintenance drug)
 - is patient compliance a factor? (device, timing)

Pharmacokinetics of Inhaled Drugs

Pharmacokinetics of Inhaled Drugs

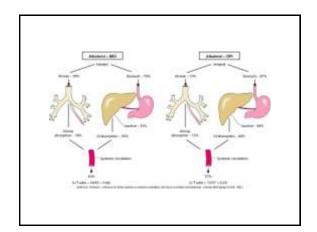
- Local versus systemic effect
 - inhaled aerosols are deposited on the surface of the airways and so are considered topical drugs
 - may be used for both local and systemic effects
 - · local effect examples
 - · systemic effect examples

Pharmacokinetics of Inhaled Drugs

- Inhaled aerosols in pulmonary disease
 - most inhaled aerosol drugs are intended for a local effect
 - .

 - .
 - inhalational route is used to maximize lung deposition and effect and minimize systemic absorption, effect and side effects

Pharmacokinetics of Inhaled Drugs


- Pharmacokinetics of Inhaled Drugs
 - a portion of all inhaled aerosols is swallowed due to impaction in the mouth and oropharynx
 - _

Pharmacokinetics of Inhaled Drugs

- Pharmacokinetics of Inhaled Drugs
 - oral portion
 - .
 - .
 - airway portion
 - •
 - .

Pharmacokinetics of Inhaled Drugs

- Lung availability/total systemic availability ratio (L/T)
 - The portion of a drug available from the lung out of the total systemically available drug
 - Quantifies the efficiency of aerosol drug delivery to the lung and is based on the distribution to the airway and GI tract
 - The therapeutic effect of a bronchoactive drug comes from the inhaled drug deposited in the lung
 - The systemic side effects are the result of the amount of drug absorbed into the system

