Pharmacokinetic Phase

This phase describes the time course and disposition of a drug in the body, based on its absorption, distribution, metabolism and elimination.

Definitions

- Pharmacokinetics: describes what the body does to a drug
- Pharmacodynamics: describes what the drug does to the body
Absorption

- For a drug to be absorbed and used by the body, it must first pass through various anatomical barriers
- For example, an oral dosed drug must first reach the epithelial lining of the stomach or intestine, traverse the lipid membrane barrier of the cells - only then can it be absorbed into the blood for distribution

Absorption

- Inhaled drugs have a similar path
 - airway surface liquid
 - epithelial cells
 - basement membrane
 - interstitium
 - capillary vascular network
 - and eventually to the smooth muscle or glands of the airway where it is intended to work
Absorption

• Drugs traverse these barriers by various mechanisms
 – aqueous diffusion
 – lipid diffusion
 – carrier-mediated transport
 – pinocytosis

• In general, drugs must be sufficiently water-soluble to reach a cell membrane and sufficiently lipid-soluble to diffuse across the cell (lipid) barrier

Absorption

• Aqueous diffusion
 – occurs in the aqueous compartments
 – diffusion is by
 – small pore size
 – most drugs pass into capillaries because of larger pores

Absorption

• Lipid diffusion
 – to diffuse across a lipid layer
 – another factor that affects lipid solubility is ionization
 – lipid insoluble drugs tend to be ionized or polar
 – lipid soluble drugs
 – diffusion across cell membranes
Absorption

- **Examples**
 - thiopental, a barbiturate, is poorly ionized in the bloodstream and will diffuse across cell membranes into the brain, producing sedation, sleep or anesthesia.
 - tubocurarine, a paralyzing agent, is a fully ionized compound which will not reach the brain - a patient paralyzed with tubocurarine cannot move at all, but is fully awake.

Absorption

- **The degree of ionization of drugs that are weak acids or weak bases is dependent on**
 - the drug's pKa
 - the ambient pH which varies
 - whether the drug is a weak acid or base
 - weak acids
 - weak bases

Absorption

- **Examples**
 - ipratropium bromide (Atrovent) has no capacity for reversible binding of H+ ions and is permanently positively charged; therefore it is not lipid soluble and does not absorb well from the mouth or lungs - advantage: few, if any, systemic effects/side effects.
 - atropine can give up H+ and become nonionized increasing its absorption and distribution - disadvantage: increased occurrence of side effects.
Absorption

- **Examples**
 - acetylsalicylic acid (aspirin) has a pK_a of 3.0 and is 9% ionized at a pH of 2 and 91% ionized at a pH of 4 meaning it is well absorbed from the gastric lining, not so well absorbed from the intestinal tract.

Absorption

- **In summary**
 - consider pK_a a reference baseline
 - for a weak acid, there is less ionization in an acidic environment
 - for a weak base, there is more ionization in an acidic environment
- **Key principle is:**

Absorption

- **Carrier-mediated (facilitated) transport**
 - carrier molecules
 - unlike aqueous diffusion and lipid diffusion
 - since it does not depend on a concentration gradient
Absorption

- Pinocytosis (endocytosis/exocytosis)

Factors affecting absorption
- Primary factor is route of administration which affects time to onset of action, peak effect and duration of action
 - IV
 - Oral
 - Aerosol
Absorption

- generally, a trade-off exists between onset of action and duration of action
- bioavailability is another factor affecting absorption - example -

Distribution
Distribution
• Drug distribution
 – protein binding
• Plasma concentration is determined by
 – if delivery exceeds absorption and elimination
 – drug doses must be adjusted

Metabolism

• Major site of drug metabolism is the liver
 – contains microsomal enzymes
Metabolism

- Enzyme induction
 - chronic administration or abuse of drugs
 - example - rifampin
 - dosages of affected drugs

- First-pass effect
 - when a drug is given orally
 - if the drug is metabolized by liver enzymes
Metabolism

- solution is to increase the oral dose or administer via routes that circumvent this first-pass metabolism e.g.
 injection transdermal
 buccal rectal
 sublingual inhalational
- these routes allow the drug to be distributed throughout the body before being circulated through the liver

Elimination

- Primary site of drug excretion is the kidney
- Function of both the liver and kidneys must be known
Elimination

- **Clearance**
 - a measure of the body's ability to rid itself of a drug
 - usually expressed as total systemic clearance or plasma clearance
 - plasma clearance is arguably theoretical at best, but could be used to help define a maintenance dose

- **Plasma half-life ($T_{1/2}$)**
 - $T_{1/2}$
 - may be more important in terms of understanding
 - drugs with a short $T_{1/2}$
 - drugs with a long $T_{1/2}$

- the whole concept of steady-state plasma levels is important because
 - one method often employed to decrease these peaks and valleys
Elimination

- with inhaled aerosol bronchodilators, the $T_{1/2}$ is measured by the effect on peak expiratory flow rates (PEF), or by the effect on the forced expiratory volume in the first second of expiration (FEV$_1$)
 - example – pre-bronchodilator PEF = 30 L/min and maximum post-bronchodilator PEF = 60 L/min, then the $T_{1/2}$ would be the time required for the PEF to drop to 45 L/min
 - since the total increase = 30 L/min, the $T_{1/2}$ represents the time it takes to lose one half of that increase, or 15 L/min

Elimination

- with inhaled aerosol drugs, it is also important to look at time-effect curves
 - useful when determining how a drug will be used
 - therapeutic effect should be one of the primary factors
Pharmacokinetics of Inhaled Drugs

- Local versus systemic effect
 - inhaled aerosols are deposited on the surface of the airways
 - may be used for both local and systemic effects
 - local effect examples
 - systemic effect examples
Pharmacokinetics of Inhaled Drugs

• Inhaled aerosols in pulmonary disease
 – most inhaled aerosol drugs are intended for a local effect
 •
 •
 •
 – inhalational route is used to

Pharmacokinetics of Inhaled Drugs

• Pharmacokinetics of Inhaled Drugs
 – a portion of all inhaled aerosols
 – a 1981 study
 – the airway proportion can vary

Pharmacokinetics of Inhaled Drugs

• Pharmacokinetics of Inhaled Drugs
 – oral portion
 •
 •
 – airway portion
 •
 •
Pharmacokinetics of Inhaled Drugs

- Lung availability/total systemic availability ratio (L/T)