RSPT 2317 Principles of Drug Action Part 2: The Pharmacokinetic Phase

Pharmacokinetic Phase

This phase describes the time course and disposition of a drug in the body, based on its absorption, distribution, metabolism and elimination.

Definitions

- Pharmacokinetics:
 describes what the body does to a drug
- Pharmacodynamics - describes what the drug does to the body

Absorption

Absorption

- For a drug to be absorbed and used by the body, it must first pass through various anatomical barriers
- For example, an oral dosed drug must first reach the epithelial lining of the stomach or intestine, traverse the lipid membrane barrier of the cells - only then can it be absorbed into the blood for distribution

- Inhaled drugs have a similar path
 - airway surface liquid
 - epithelial cells
 - basement membrane
 - interstitium
 - capillary vascular network
 - and eventually to the smooth muscle or glands of the airway where it is intended to work

Absorption

- Drugs traverse these barriers by various mechanisms
 - aqueous diffusion
 - lipid diffusion
 - carrier-mediated transport
 - pinocytosis
- In general, drugs must be sufficiently watersoluble to reach a cell membrane and sufficiently lipid-soluble to diffuse across the cell (lipid) barrier

Absorption

- Aqueous diffusion
 - occurs in the aqueous compartments
 - diffusion is by
 - small pore size
 - most drugs pass into capillaries because of larger pores

- Lipid diffusion
 - to diffuse across a lipid layer
 - another factor that affects lipid solubility is ionization
 - lipid insoluble drugs tend to be ionized or polar
 - lipid soluble drugs
 - diffusion across cell membranes

Absorption

- Examples
 - thiopental, a barbiturate, is poorly ionized in the bloodstream and will diffuse across cell membranes into the the brain, producing sedation, sleep or anesthesia
 - tubocurarine, a paralyzing agent, is a fully ionized compound which will not reach the brain - a patient paralyzed with tubocurarine cannot move at all, but is fully awake

Absorption

- The degree of ionization of drugs that are weak acids or weak bases is dependent on

 the drug's pKa
 - the ambient pH which varies
 - whether the drug is a weak acid or baseweak acids
 - weak bases

- Examples
 - ipratropium bromide (Atrovent) has no capacity for reversible binding of H⁺ ions and is permanently positively charged; therefore it is not lipid soluble and does not absorb well from the mouth or lungs advantage: few, if any, systemic effects/side effects
 - atropine can give up H⁺ and become nonionized increasing its absorption and distribution disadvantage: increased occurrence of side effects

Absorption

- Examples
 - acetylsalicylic acid (aspirin) has a pKa of 3.0 and is 9% ionized at a pH of 2 and 91% ionized at a pH of 4 meaning is is well absorbed from the gastric lining, not so well absorbed from the intestinal tract

Absorption

- In summary
 - consider pKa a reference baseline
 - for a weak acid, there is less ionization in an acidic environment
 - for a weak base, there is more ionization in an acidic environment
- Key principle is:

- Carrier-mediated (facilitated) transport – carrier molecules
 - unlike aqueous diffusion and lipid diffusion
 - since it does not depend on a concentration gradient

Absorption

• Pinocytosis (endocytosis/exocytosis)

- Factors affecting absorption
 - primary factor is route of administration which affects time to onset of action, peak effect and duration of action
 - IV
 - oral
 - aerosol

Absorption

- generally, a trade-off exists between onset of action and duration of action
- bioavailability is another factor affecting absorption -

• example -

Absorption

- absorption is also affected by

•

.

Distribution

7

Distribution

- Drug distribution
 - protein binding
- Plasma concentration is determined by
 - if delivery exceeds absorption and elimination
 - drug doses must be adjusted

Metabolism

Metabolism

• Major site of drug metabolism is the liver – contains microsomal enzymes

Metabolism

- First-pass effect

 when a drug is given orally
 - if the drug is metabolized by liver enzymes

Metabolism

- solution is to increase the oral dose or administer via routes that circumvent this first-pass metabolism e.g. injection transdermal buccal rectal sublingual inhalational
- these routes allow the drug to be distributed throughout the body before being circulated through the liver

Elimination

Elimination

- Primary site of drug excretion is the kidney
- Function of both the liver and kidneys must be known

Elimination

- Clearance
 - a measure of the body's ability to rid itself of a drug
 - usually expressed as total systemic clearance or plasma clearance
 - plasma clearance is arguably theoretical at best, but could be used to help define a maintenance dose

Elimination

• Plasma half-life (T_{1/2})

- T_{1/2}

- may be more important in terms of understanding
- drugs with a short $T_{1\!/\!2}$
- drugs with a long $T_{1/2}$

Elimination

- the whole concept of steady-state plasma levels is important because
- one method often employed to decrease these peaks and valleys

Elimination

- with inhaled aerosol bronchodilators, the T_{1/2} is measured by the effect on peak expiratory flow rates (PEF), or by the effect on the forced expiratory volume in the first second of expiration (FEV₁)
 - example pre-bronchodilator PEF = 30 L/min and maximum post-bronchodilator PEF = 60 L/min, then the $T_{1/2}$ would be the time required for the PEF to drop to 45 L/min
 - since the total increase = 30 L/min, the $T_{\rm 1/2}$ represents the time it takes to lose one half of that increase, or 15 L/min

Elimination

- with inhaled aerosol drugs, it is also important to look at time-effect curves
- useful when determining how a drug will be used
- •
- •
- therapeutic effect should be one of the primary factors

Pharmacokinetics of Inhaled Drugs

Pharmacokinetics of Inhaled Drugs

• Local versus systemic effect

- inhaled aerosols are deposited on the surface of the airways
- may be used for both local and systemic effects
 local effect examples
 - systemic effect examples

Pharmacokinetics of Inhaled Drugs

- Pharmacokinetics of Inhaled Drugs – a portion of all inhaled aerosols
 - a 1981 study
 - the airway proportion can vary

Pharmacokinetics of Inhaled Drugs

- Pharmacokinetics of Inhaled Drugs
 - oral portion
 - •
 - – airway portion
 - •

.

Pharmacokinetics of Inhaled Drugs

• Lung availability/total systemic availability ratio (L/T)