RSPT 2317
Parasympatholytics

Anticholinergic Bronchodilators
(Parasympatholytics)

History & Development

- Prototypical parasympatholytic agent is atropine
 - an alkaloid found naturally in the plants Atropa belladona (nightshade) and Datura species
 - scopolamine is also extracted from the belladonna - both atropine and scopolamine are known as belladonna alkaloids
 - evidence that these compounds have been ingested for thousands of years for their CNS effects
 - fumes from the burning Datura species were inhaled as treatment for respiratory disorders as early as the 17th century
 - use of Datura to treat asthma and cough reached Britain in 1802
 - in mid-19th century America, smoking Datura was a common treatment - various cigars, cigarettes and pipes were available
 - this practice was attacked on several levels, from inconsistent dosing to irritant effects

- by the 1930s, adrenaline and ephedrine had replaced the belladonna alkaloids
- interest in parasympatholytics was renewed in the 1980s
 - new understanding of their role
 - introduction of atropine derivatives with fewer side effects
- ipratropium bromide was released in the U.S. in 1987 as Atrovent
- a new, long-acting anticholinergic bronchodilator (24 hour action following a single dose), tiotropium is under investigation
Clinical Indications

- Anticholinergic bronchodilators
 - ipratropium and other anticholinergic agents are indicated for maintenance treatment in asthma and COPD, including chronic bronchitis and emphysema
- Combined anticholinergic and sympathomimetics bronchodilators
 - e.g. Combivent - indicated for patients with COPD on regular treatments who require additional bronchodilation relief of airflow obstruction
 - ipratropium is also used in conjunction with sympathomimetics in severe asthma, especially during acute episodes that do not respond to β agonist therapy

Anticholinergic bronchodilators

- Anticholinergic nasal spray
 - indicated for symptomatic relief of allergic and non-allergic perennial rhinitis and the common cold

Specific Agents

- Atropine sulfate
 - a tertiary ammonium compound that is not fully ionized and is readily absorbed from the GI tract and respiratory mucosa
 - bronchodilation and side effects are both dose-related
 - children - 0.05 mg/kg tid-qid
 - adults - 0.025 mg/kg tid-qid
 - greater bronchodilation and duration of action are seen at dosages of 0.05-0.1 mg/kg
 - side effects (dry mouth, blurred vision, tachycardia) at this dosage schedule are unacceptable
Specific Agents

- **Ipratropium bromide (Atrovent)**
 - a quaternary ammonium derivative of atropine that is fully ionized and does not distribute well across lipid membranes, so its distribution is limited more to the lung when inhaled
 - available as:
 - an MDI delivering 18 µg/puff
 - a nebulizer solution of 0.02% concentration in a 2.5 ml vial, delivering a 500 µg dose per treatment
 - a nasal spray solution of 0.03% delivering 21 µg/spray
 - a nasal spray solution of 0.06% delivering 42 µg/spray

- **Ipratropium and albuterol (Combivent)**
 - a combination MDI product
 - ipratropium 18 µg/puff
 - albuterol 90 µg/puff
 - product has been shown to be more effective in stable COPD than either product alone

 (a combination product of ipratropium (0.04 mg/puff) and fenoterol (0.1 mg/puff) is available as Duovent in Great Britain)
Specific Agents

- Tiotropium bromide (Spiriva)
 - developed as a long-acting bronchodilator
 - structurally related to ipratropium and is poorly absorbed after inhalation
 - appears to maintain a higher level of baseline bronchodilation than ipratropium
 - dosage is 18 µg inhaled once daily from the DPI (HandiHaler), which provides significant bronchodilation for 24 hours

Specific Agents

- Glycopyrrolate (Robinul)
 - used as a parenterally administered drug to reverse neuromuscular blocking agents
 - an injectable solution has been used as a less expensive alternative to Atrovent, by glycopyrrolate is not approved for inhalation
- Oxitropium bromide
 - available outside the U.S. as an MDI product – it is in its investigational stages in U.S.
 - reportedly has a faster onset of action than ipratropium
 - marketed in Great Britain as Oxivent

Mode of Action

- Bronchomotor tone
 - in the normal airway, a basal level of bronchomotor tone is caused by parasympathetic activity
 - this basal level can be abolished by the administration of atropine, suggesting it is mediated by acetylcholine
 - administration of a parasympathomimetic agent e.g. methacholine can intensify the level of bronchial tone to the point of constriction in healthy subjects and more so in asthmatics (methacholine challenge)
Parasympatholytics

Mode of Action
- Bronchomotor tone
 - Anticholinergic (parasympatholytic) agents e.g. atropine, ipratropium and tiotropium competitively block the action of acetylcholine and can block cholinergic-induced bronchoconstriction
 - Atropine has been shown to inhibit exercise-induced asthma, psychogenic bronchoconstriction and bronchoconstriction caused by β blockade (see fig. 7-2, p. 143)

Adverse Effects
- MDI & SVN (common)
 - Dry mouth
 - Cough
- MDI (occasional)
 - Nervousness
 - Itch
 - Dizziness
 - Headache
 - Palpitation
 - Rash
- SVN
 - Pharyngitis
 - Dyspnea
 - Flu-like symptoms
 - Bronchitis
 - Upper respiratory infections
 - Nausea
 - Occasional bronchoconstriction
 - Eye pain
 - Urinary retention (<3%)

Clinical Application
- Use in COPD
 - Have been found to be more potent bronchodilators than β adrenergic agents in bronchitis-emphysema
 - This will likely be their primary clinical application
 - Tiotropium offers a prolonged duration of action of up to 24 hrs with a single, daily inhalation
- Use in asthma
 - Not even labeled for asthma use in U.S.
 - Indicated as a bronchodilator for maintenance treatment of bronchospasm associated with chronic obstructive pulmonary disease, including chronic bronchitis and emphysema
 - While they have been proven more effective in COPD and bronchitis, they have not been proven superior to treat asthma
Clinical Application

- Use in asthma
 - may be especially useful in the following applications:
 - nocturnal asthma, where the longer duration may protect against night-time deterioration of flows
 - psychogenic asthma which may be mediated through vagal parasympathetic action
 - asthmatic patients who require β blocking agents
 - as an alternative to theophylline in patients with notable side effects from that drug
 - acute, severe episodes of asthma, not responding to β agonists

Clinical Application

- Combination therapy in COPD
 - should offer advantages in treating COPD based on
 - complementary sites of action: anticholinergic acting on the more central airways and β agonist acting on smaller, more peripheral airways
 - mechanisms of action of anticholinergic and β agonist agents are separate and complementary
 - additive effect
 - a 1996 study of 462 patients in 25 medical centers over 85 days showed superior efficacy of combination therapy as compared to either class of drug given alone

Clinical Application

- Combination therapy in COPD
 - sequence of administration
 - this has been argued both ways
 - parasympatholytic first since it acts in the larger airways
 - sympathomimetic first since it has a more rapid onset of action and it acts in both large and small airways
 - no strong data support either method
 - according to Rau, sequence probably doesn’t matter and preparations such as Combivent and the mixing of albuterol and Atrovent make it a moot point
Assessment of Anticholinergic Therapy

- Assess the effectiveness of therapy based on the indication(s) for the therapy
 - presence of reversible airflow obstruction resulting from primary bronchospasm or obstruction due to inflammation or secretions, either acute or chronic
- Monitor flow rates with a bedside peak flow meter, portable spirometry or lab reports of pulmonary function
 - pre- and post-bronchodilator studies don’t predict response to parasympatholytics, since β-adrenergics are used for those tests
- Perform respiratory assessment before and after treatment
- Assess pulse before, during and after treatment

Assessment of Anticholinergic Therapy

- Assess patient’s subjective reaction to therapy
- Assess ABGs or SpO₂ as needed to monitor changes in ventilation and oxygenation
- Long term: monitor PFT studies
- Instruct and verify correct use of aerosol devices
 - emphasize protection of the eye from aerosols
For long-acting parasympatholytics
 - assess ongoing lung function
 - assess amount of concomitant β agonist use and nocturnal symptoms
 - assess number of exacerbations
 - assess days of absence due to symptoms

Dosing Schedules

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Onset</th>
<th>Peak</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipratropium bromide</td>
<td>100 mcg</td>
<td>15 min</td>
<td>2 hr</td>
<td>8-12 hr</td>
</tr>
<tr>
<td>and albuterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropicin bromide</td>
<td>60 mcg</td>
<td>15 min</td>
<td>2 hr</td>
<td>8-12 hr</td>
</tr>
<tr>
<td>Tropicin bromide</td>
<td>60 mcg</td>
<td>15 min</td>
<td>2 hr</td>
<td>8-12 hr</td>
</tr>
<tr>
<td>Tropicin bromide</td>
<td>60 mcg</td>
<td>15 min</td>
<td>2 hr</td>
<td>8-12 hr</td>
</tr>
<tr>
<td>Tropicin bromide</td>
<td>60 mcg</td>
<td>15 min</td>
<td>2 hr</td>
<td>8-12 hr</td>
</tr>
</tbody>
</table>