Adrenergic Bronchodilators (Sympathomimetics) Part 2

Routes of Administration

- Inhalation route
 - preferred route because
 - onset is rapid
 - smaller doses are needed compared to the oral route
 - side effects e.g. tremor and tachycardia are reduced
 - drug is delivered directly to the target organ
 - continuous nebulization
 - continuous administration of inhaled adrenergic agents has been used to avoid respiratory failure, intubation and mechanical ventilation
 - NAEPP EPR II guidelines recommend 2.5-5 mg of albuterol by nebulizer every 20 min. x 3 doses, as well as 10-15 mg/hr by continuous nebulization

- continuous nebulization
 - the choice of continuous versus intermittent administration is not clear due to mixed results from studies that show varying levels of patient improvement with both methods; the results overall seem to support continuous nebulization for patients with severe airflow obstruction
 - delivery methods include
 - measured refilling of an SVN
 - volumetric infusion pump with an SVN
 - use of a large reservoir nebulizer e.g. the HEART or HOPE
 - toxicity and monitoring
 - continuous nebulization is not standard therapy and the patients for which it is prescribed have serious airflow obstruction problems
Routes of Administration

- continuous nebulization
 - potential complications include cardiac dysrhythmias, hypokalemia, hyperglycemia and significant tremor
 - close monitoring of patients receiving continuous nebulization is always indicated
 - selective β2 agonists such as terbutaline and albuterol should be used to reduce side effects

- Oral route
 - advantages are
 - ease and simplicity of administration
 - short time of administration
 - exact reproducibility and control of delivered dose
 - not the preferred route because
 - onset of action is about 1.5 hours, compared to 5 min. by inhalation route
 - peak effect is about 2 hours, compared to 30 min-1 hour by inhalation route
 - larger doses are required compared to inhalation route
 - frequency and degree of side effects are greater compared to inhalation route

- Parenteral administration
 - β adrenergic bronchodilators can also be given subcutaneously and intravenously - usually in the emergency management of acute asthma
 - subcutaneous administration
 - epinephrine - 0.3 mg q 15-20 min, up to 1 mg in 2 hrs
 - terbutaline - 0.25 mg repeated in 15-30 min, up to 0.5 in 4 hr
 - it has been suggested that both inhalation and subcutaneous administration of β adrenergic bronchodilators be used to manage acute obstruction
 - intravenous administration
Routes of Administration

- **Parenteral administration**
 - **intravenous administration**
 - has been used most often with isoproterenol and albuterol
 - may be of benefit since by this route the drug is available to all areas of the lung and not just the ventilated areas; although recent studies indicate that aerosols to have an impact on obstructed areas
 - isoproterenol - not clearly advantageous for bronchodilation by this route; dose is limited by tachycardia; administration requires an infusion pump, cardiac monitor and close observation
 - children’s dosages - 0.1-0.8 µg/kg/min
 - adult dosages - 0.03-0.2 µg/kg/min
 - both until bronchial relaxation or side effects occur

- **albuterol**
 - IV as a bolus, 100-500 µg or by infusion, 4-25 µg/min
 - although more β-specific, the clinical usefulness of IV albuterol has not been clearly established

Adverse Side Effects

- **Adverse side effects seen with β agonists include**
 - tremor
 - palpitations & tachycardia
 - headache
 - insomnia
 - increased BP
 - nervousness
 - dizziness
 - nausea
 - tolerance to drug effects
 - loss of bronchoprotection
 - worsening of V/Q ratio
 - hypokalemia
 - bronchoconstrictor reaction
Adverse Side Effects

- Adverse side effects seen with β agonists
 - tremor
 - due to stimulation of β2 receptors in skeletal muscle
 - dose related
 - more common with oral administration
 - tolerance to tremors usually develops in a period of days or weeks
 - cardiac effects
 - dose-limiting effect is tachycardia
 - increases cardiac output and oxygen consumption
 - newer agents have limited cardiac effects, however effects can still occur, probably due to β2 receptors in the heart

- cardiac effects
 - β2 agonists also cause vasodilation, which can cause a reflex tachycardia
 - agents like albuterol and terbutaline can actually improve cardiac performance - they cause peripheral vasodilation and increase myocardial contractility without increasing oxygen demand by the heart; the net effect is a reduction in afterload and improvement in cardiac output with no oxygen cost, so these agents can be attractive for use in patients with congestive heart failure
 - tolerance to drug effect
 - tolerance is a concern because using the drug is actually reducing its effectiveness

- tolerance to drug effect
 - acute desensitization of β receptors can occur within minutes of β agonist administration with long-term desensitization to follow - removal of the β agonist apparently allows the receptors to return to a fully active state
 - such tolerance is no considered clinically important and does not contraindicate the use of β agonists
 - altered β receptor function can also be caused 2° to inflammation
 - increased levels of phospholipase A2 (PLA2) may destabilize membrane support of the β receptors
 - cytokines, such as interleukin 1β can cause desensitization of β receptors
Adverse Side Effects

- Adverse side effects seen with \(\beta \) agonists
 - altered \(\beta \) receptor function can also be caused 2\(^*\) to inflammation
 - corticosteroids can reverse the desensitization of \(\beta \) receptors
 and are said to potentiate the response to \(\beta \) agonists - and \(\beta \)
 agonists may in turn have a positive effect on corticosteroid
 function
 - loss of bronchoprotection
 - bronchoprotection, as opposed to bronchodilation, refers to the
 reaction of the airways to provocative stimuli - this protection
 appears to decline at a faster rate than does the bronchodilating
 effect
 - CNS effects
 - side effects such as headache, nervousness, irritability, anxiety,
 and insomnia are caused by CNS stimulation
 - the feeling of nervousness may be more the result of muscle
 tremor rather than direct CNS stimulation
 - these types of CNS effects should be noted by the clinician and
 may warrant changes in medication dosage
 - decrease in \(P_{aO_2} \)
 - noted with albuterol and salmeterol and are probably due to an
 increase in perfusion to poorly ventilated lung regions by the
 reversal of hypoxic pulmonary vasoconstriction by \(\beta \) agonists
 - drops in \(P_{aO_2} \), rarely exceed 10 mmHg and are statistically significant
 but may be physiologically negligible
 - metabolic disturbances
 - \(\beta \) agonists can increase blood glucose and insulin levels and
 decrease serum K\(^+\) levels - these are normal effects of
 sympathomimetics
 - clinicians should be aware of possible glucose/insulin changes in
 the diabetic patient
 - hypokalemia is a short-lived effect
 - all of these metabolic disturbances are minimized with aerosol
 administration because serum levels remain low
 - propellant toxicity and paradoxical bronchospasm
 - 4-7% of users of MDI may experience this phenomenon
 - switch to DPI, SVN or oral administration
The β Agonist Controversy

- **Asthma morbidity and mortality**
 - on the rise, despite advances in the understanding of asthma and the availability of improved asthma drugs
 - most of the studies implicating the use of β agonists as the cause have not been conclusive
 - causes that may lead to worsening asthma severity include
 - use of β agonists allows individuals to expose themselves to asthma triggers with no immediate response as a warning, but with development of progressive airway inflammation and increasing bronchial hyperresponsiveness
 - repeated self-administration of β agonists provides temporary relief of symptoms, causing an underestimation of severity and leading to a delay in seeking medical attention
 - β agonists do not block progressive inflammation which can lead to death from lethal airway obstruction and hypoxia

- **Insufficient use of anti-inflammatory agents with the use of β agonists to control the inflammatory nature of asthma and target the symptoms of wheezing and airway resistance**
- **Accumulation of the S-isomer with racemic β agonists could exert a detrimental effect on asthma control**
- **There is increased airway irritation with environmental pollution and lifestyle changes**
- **NAEPP guidelines stress that asthma is a disease of chronic airway inflammation and treatment with β agonists alone does not address the inflammation - concurrent β agonist/anti-inflammatory therapy should be evaluated along with controlling environmental factors**

RC Assessment of β Agonist Therapy

- **Assess effectiveness of therapy based on the clinical indications for the aerosol agent**
- **Monitor flow rates to assess reversibility of airflow obstruction**
- **Perform respiratory assessment pre- and post-treatment**
- **Assess pulse before, during and after treatment**
- **Assess patient's subjective reaction to treatment**
- **Assess ABGs or SpO₂ as prn for acute stages of asthma or COPD to monitor changes in ventilation and oxygenation**
RC Assessment of \(\beta \) Agonist Therapy

- Note effect of \(\beta \) agonist therapy on blood glucose and \(K^+ \) levels if back-to-back or continuous therapy is ordered
- Over the long term, monitor changes in PF studies
- Instruct patients in use of peak flow devices and on interpretation of values - make sure patients have an action plan
- Emphasize to patients that \(\beta \) agonists do not treat inflammation
- Instruct patients on proper use and cleaning of aerosol delivery devices

RC Assessment of \(\beta \) Agonist Therapy

For long-acting \(\beta \) agonists

- Assess ongoing lung function
- Assess amount of rescue \(\beta \) agonist use and nocturnal symptoms
- Assess number of exacerbations, unscheduled physician visits and hospitalizations
- Assess days of absence because of symptoms
- Assess ability to reduce the dose of concomitant inhaled corticosteroids