Neonatal/Pediatric Cardiopulmonary Care

Assessment

Anatomic and Physiologic Differences

- Cardiopulmonary System
- Metabolic System
- Other

Cardiopulmonary Differences

- Tongue proportionally larger
- Large amt. lymphoid tissue in pharynx
 ↓
 ↓
Neonatal Assessment

Cardiopulmonary Differences

- **Epiglottis**
 - Proportionally larger
 - Less flexible
 - Omega-shaped (Ω)
 - Lies more horizontal

Cardiopulmonary Differences

- **Larynx**
 - Lies higher in relation to cervical spine
 - = narrowest segment of infant airway (cricoid ring)

Cardiopulmonary Differences

- Diameter of *trachea* at carina =

- Length of *trachea* =
Cardiopulmonary Differences

All differences (so far) combined

•
•

Cardiopulmonary Differences

• Less rigid

↑ in neg. pressure effort (to ↓ ventilation) just ↓ chest size since thorax is less rigid

Result →

Cardiopulmonary Differences

• Ribs more horizontal

Infant can't increase A-P diameter

Result →
Neonatal Assessment

Cardiopulmonary Differences

Ribs & sternum

- Any attempted increase in ventilation is accomplished by increasing -

- Increasing respiratory rate increases -

Cardiopulmonary Differences

- Heart
 - Larger in proportion to thorax size (imposes on lungs)

- Abdominal content
 - Larger in proportion to thorax size (push up on diaphragm)

- Alveoli
 - Infant -
 - Adult -

Cardiopulmonary Differences

Ribs, sternal, heart, abdominal & alveolar differences

↓
Cardiopulmonary Differences

- **Obligate nose-breathers**
 - Breathe through nose under most conditions
 - Any ↓ in nasopharynx diameter increases airway resistance and WOB

Metabolic Differences

- **Caloric requirement**:
 - Neonates =
 - Adults =

- Neonate has *higher oxygen need in proportion to body size* (VO2)
 - Infant =
 - Adult =

Metabolic Differences

- **Do not respond to medication therapy in any predictable manner**
 - Similar infants may have dramatically different reactions to same meds
 - No definitive dosages or frequencies of administration established
 - Each time a drug is given, dosage must be adjusted for each patient
Other Differences

• **Large amount of skin surface area** \(\propto \) **weight**
 - Adult male:
 - Term neonate:
 - 28 wk. Premie:

Other Differences

• **80% of body weight** = **water**
 - Found in extracellular spaces

• **Transition from uterine life to survival outside is critical time**

• **Responsibility of HCG to determine how well infant is adapting**

• **Vital to know**
 - Obstetric history
 - Pregnancy history
 - L & D history
Gestational Age Assessment

- Until 1960's gestational age was based mostly on birth weight
 - <2500 g.
 - >4000 g.
- Assumed all fetuses grow at same rate
- Important to determine age to anticipate potential problems to treat or avoid

Dubowitz Scale

- Assesses gestational age with physical (11) & neurological (10) exam
- Scored 0-5 for each sign
- Physical signs more accurate
- When both evaluated = more accurate than either used alone
- Accurate to within 2 weeks
- Is a slow method, so

Ballard Scale

- 6 neuro signs & 6 physical signs (scored 0-5)
- Comparable to Dubowitz in accuracy
- Requires less time
- Assess:
 - Sole creases
 - Skin maturity
 - Lanugo
 - Ear recoil
 - Breast tissue
 - Genitalia
 - Posture
 - Wrist angle
 - Arm recoil
 - Hip angle
 - Scarf sign
 - Heel to ear
Classification of Neonate

• Gestational age + weight
 - SGA (small for gestational age)
 - AGA (appropriate for gestational age)
 - LGA (large for gestational age)

Physical Assessment

• Purposes
 - Discover physical defects
 - Successful transition?
 - Effect of L & D, anesthetics, analgesics
 - Assess gestational age
 - Signs of infection or metabolic disorder
 - Baseline for further comparison

Physical Assessment

• Done when infant is stabilized (keep warm)

• 2 parts to exam
 - Quiet observation
 - Hands-on
Neonatal Assessment

Quiet Observation

• **Observe color**
 - Light-skinned -- skin color
 - Dark-skinned -- mucous membranes
 - Should be pink
 - Blue or pale -- hypoxemia
 - Blue feet, hands OK for 1st few hours
 - Yellow hue to skin or eyes = jaundice
 - Dark green = meconium (asphyxia may have been present in utero)

Quiet Observation

• **Look for presence of lanugo**
• **Skin maturity**
• **Activity**
 - Symmetry of movement
 - Good muscle tone
 - Normal movement of all extremities
• **Overall appearance of patient**
 - Malformations
 - Head size-to-body size
 - Cysts, tumors

Quiet Observation

• **Respirations**
 - Normal =
 - Periodic breathing is normal (<5-10 sec. without cyanosis or bradycardia)
 • True Apnea =
 - Tachypnea =
 • Could be respiratory distress, needs to be investigated
 - Symmetrical chest movement
 - Should be good abdominal movement
 • Sign of intact diaphragm
Neonatal Assessment

Quiet Observation

- **Watch for the 3 classic signs of respiratory distress**

 1. Attempt to get more volume to lungs

 2. High pitched noise made by glottis closing before end of expiration = PEEP to keep alveoli from collapsing

Quiet Observation

3.

- Inward movement of thoracic soft tissue
- May be mild, moderate or severe
- Supraclavicular, suprasternal, intercostal, substernal
- As respiratory distress increases — lung compliance ↓ — negative pressure in thorax ↑ to overcome ↓ CXR — soft tissues “sucked” in

- Evaluate degree of respiratory distress with Silverman-Anderson Index

Silverman Scoring

![Silverman Scoring Diagram](image_url)
Neonatal Assessment

Hands-On Exam

- Warm hands, warm stethoscope
- Start at head and work down

- **Head**
 - Inspected for cuts, bruises, edema
 - Fontanelles (soft spots; anterior & posterior)
 * Should be firm but soft, not bulging (↑ ICP) or depressed (dehydrated)

Hands-On Exam

- **Mouth** (clefts)
- **Ears** (age)
- **Neck** (cysts, tumors)
- **Breast tissue** (age)

Hands-On Exam

- **Heart**
 - Auscultated
 - HR
 * Normal ➔
 * <100 ➔
 * >80 ➔
 * >160 ➔
Hands-On Exam

Heart
- Apical pulse
 - Point on chest where heart sounds heard loudest
 - = point of maximal intensity (PMI)
 - Normal is at left 5th intercostal space, mid-clavicular line
 - If moves later

Heart
- Normally 2 distinct heart sounds
 - 1st sound louder
- Murmurs
 - Turbulent flow in heart
 - Valvular defects, septal defects, PDA, aortic stenosis
 - Not all murmurs are bad

Hands-On Exam

Lungs
- Well-aerated, no adventitious sounds

Pulses
- Brachial pulses compared to femoral
 - Should be of equal intensity & symmetrical in rhythm
 - Both weak = hypotension, ↓ QT, peripheral vasoconstriction
 - Femoral weak, brachial normal = coarctation of aorta, PDA
Neonatal Assessment

Hands-On Exam

- **Blood pressure**
 - Normally varies with gestational age, weight, cuff size, state of alertness
 - Taken with Doppler or electronic (cuff around thigh), UAC
 - Diastolic may be difficult to assess
 - Normal =

- **Abdomen**
 - Palpated for cysts, tumors
 - Liver palpated & measured in cm
 - Normally abdomen protrudes
 - If scaphoid (sunken) = diaphragmatic hernia
 - Check umbilical stump for 3 vessels
 - Bowel sounds documented

- **Genitalia** – age

- **Feet** – age

- **Temperature**
 - Rectally or axillary or ear
 - 36.2°C - 37.3°C (97.2°F - 99.1°F)
Neurological Exam

• **Much of neuro exam can be done during physical exam**
 - Movement
 - Crying
 - Response to touch
 - Body tone

Neurological Exam

• **Reflex exams**
 - Rooting reflex
 • Gently stroke corner of mouth
 • Infant should turn head towards side stroked
 - Suck reflex
 • Place pacifier or clean finger into mouth
 • Infant should begin to suck

Neurological Exam

• **Reflex exams**
 - Grasp reflex
 • Place index finger into infant's palm
 • Grasp finger & place your thumb over fingers
 • Gently pull infant to sitting position
 • Assess degree of head control
 • Healthy infant can keep head upright
Neurological Exam

- Reflex exams
 - Moro reflex
 - Slowly lower infant
 - Just before he touches bed, quickly remove your finger allowing him to fall to bed
 - Arms should extend up & out, hips & knees should flex

- Dubowitz or Ballard Scale scoring
 - Whitaker, Comprehensive Perinatal & Pediatric Respiratory Care,
 - pg. 116–117, 120

Chest Radiography

- Cannot be used for diagnosis of NB lung disease
 - Dx made from physical exam, lab data, clinical signs
 - Erroneous interpretation common
 - Artifact
 - Improper technique
 - Patient movement
- Used to:
 - Can also be used to differentiate between diseases with -
Neonatal Assessment

Anatomic Considerations (on CXR)
- Can cause confusion if not understood
- Position of carina
 - Higher than adult
 - NB -
 - adult -

Anatomic Considerations (on CXR)
- Thymus gland
 - Extends in mediastinum from lower edge of thyroid gland to near 4th rib
 - Less dense than heart, more dense than lung tissue
 - Often confused with heart border
 - Can appear as an upper lobe atelectasis or pneumonia
 - Often delta (Δ)-shaped - called

CXR Interpretation

1. Patient ID and date
 - Check ID, date, time
 - Use most recent CXR

2. Orientation
 - Patient's right on your left
 - Heart to the left
 - Not upside down
Neonatal Assessment

CXR Interpretation

3. **CXR Quality**
 - Exposure?
 - Normal = can see spaces between vertebrae

4. **Patient position**
 - Straight
 - Clavicles + spine form “T”
 - Peripheral ribs should turn down

CXR Interpretation

5. **Insp or exp?**
 - Insp - diaphragm at or ↓ 9th rib
 - Hyperinflation will be near or ↓ 10th rib
 - Exp - diaphragm at 6-7th rib
 - Look for deformed or fractured ribs

CXR Interpretation

6. **Diaphragm**
 - Domed on both sides
 - Right 1 rib higher than left
 - Flat with hyperinflation and air trapping
CXR Interpretation

7. **Abdomen**
 - Excessive air bubble may mean gastric distention
 - Liver on right
 - Gray-to-white
 - Should not extend more than 1-1.5 cm below rib cage
 - URC or UDC
 - URC tip - T7-8 or L3-4
 - UDC tip in IVC just above diaphragm

CXR Interpretation

8. **Cardiac silhouette & thymus gland**
 - Should be <60% of thoracic width

9. **Hilum**
 - Examine vasculature
 - Excess – CHF, cardiac malformation
 - Decreased – R→L shunt (↓ pulmonary blood flow)

CXR Interpretation

10. **Trachea**
 - Should see from larynx to carina
 - Often slightly deviates to right
 - Increased deviation with atelectasis, pneumothorax
CXR Interpretation

11. **ETT**
 - Tip 1/2 way between clavicles & carina
 - Too far – risk of RMsB intubation
 - Not far enough – risk of extubation

12. **Main stem bronchi**
 - Right – seems like extension of trachea
 - Left – angles at almost 90°

13. **Lungs**
 - Should see vasculature extend to pleural surface