Persistent Pulmonary Hypertension of the Neonate (PPHN)

- Also known as Persistent Fetal Circulation (PFC)
- Seen most frequently in term, post-term & in patients suffering from...
Pathophysiology

affected infants have severe, persistent pulmonary vasoconstriction

Pathophysiology

right heart pressure > left heart pressure
continuation of factors that allow fetal circulation pathways: blood shunting through f.o., d.a. & away from lungs
metabolic & respiratory acidosis hypoxemia which perpetuates pulmonary vasoconstriction

Etiology

• Underlying cause unknown
• Symptoms imply dysfunction of pulmonary vasoregulation resulting in abnormally high PVR
• Current theories include
 – Chronic uterine hypoxia
 – ↑ development of vascular smooth muscle
 – Perinatal factors that cause vasospasm
Diagnosis

• If hypoxemia is severe or worsening, think

• To differentiate (at bedside)
 – Hyperoxia test
 – Preductal vs. postductal test
 – Hyperoxia-hyperventilation test

Hyperoxia Test

• Give 100% oxygen x

• Do

• If PaO₂ < 100 mmHg =

Preductal vs. Postductal

• Measure preductal & postductal SpO₂ or PaO₂

• If preductal > postductal by 15-20 mmHg or more =
Hyperoxia-Hyperventilation Test

- Most accurate of the 3
- Patient hyperventilated to PaCO₂ of 20-25 mmHg & pH 7.50
- Alkalosis produces pulmonary vasodilation & systemic vasoconstriction → improves lung perfusion & O₂ content of arterial blood
- If PaO₂ <50 mmHg before test & rises to >100 mmHg after test =

Diagnosis

- Echocardiograms have advanced Dx of PPHN
- Will show
 -
 -
 -
 -

Treatment

- *Hyperventilation therapy*
 - Increases risk of barotrauma
 - Rates up to 150/min is recommended to allow ↓ inspiratory vent pressures
 - Make sure to allow enough
 - If unsuccessful →
Other

Treatment

- **INO**
 - Inhaled nitric oxide
 - Powerful, selective pulmonary vasodilator by relaxing smooth muscle
 - Mixed with oxygen then added to ventilator circuit
 - Half-life =
 - Criteria: 1) 2)

Treatment

- **INO - Results**
 - Pulmonary vasodilation
 - Improved V/Q match
 - Increased PaO₂
 - **
 - Decreased PAP
 - **
 - No change in SVR

Treatment

- **INO - Side-effects**
 - NO + Hgb ➔
 - Normal metHgb =
 - 5-6% =
 - Useless in
 - MetHgb has no
Treatment

• *INO* - Side-effects
 – NO + O₂ →
 •
 •

Administration of NO

• Mixed by special machine then introduced into inspiratory limb of vent circuit just proximal to ETT
• Mixed & added at last minute to minimize

Administration of NO

• Contraindications
 – Neonate that is dependant on
• Precautions
 – Rebound: abrupt DC can make
 – MetHgb formation:
 – NO₂ formation:
 – Drug interactions: has additive effects with
Dosage of NO

- 20 ppm x
- Decrease to 5 ppm for up to 14 days, then wean to 0 ppm
- Constant dose t/o resp cycle
- May use with
- Monitor
- –
- –
- –

Transient Tachypnea of the Newborn (TTN)

TTN

- = RDS Type II because of similarities in symptoms
- Etiology
 - Retention of lung fluid following birth
 - Occurs in term & near-term neonates with history of C-section or very fast deliveries
Diagnosis

• Within a few hours, baby shows

• May have
 • ↑ PaCO₂
 • CXR mimics early RDS

Diagnosis

• Made after all other potential problems have been ruled out
 – IRDS
 – **Pneumonia**

Treatment

• Treat symptoms
 – Warm, humidified O₂
 – Positive pressure:
 – Frequent turning
 – Gentle CPT
 – Broad-spectrum antibiotics (since often mistaken for pneumonia)
Other

Apnea

- True apnea = cessation of breathing for long enough to cause cyanosis &/or bradycardia
- Usually takes
- Classed as

<table>
<thead>
<tr>
<th>Etiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
</tr>
<tr>
<td>RDS</td>
</tr>
<tr>
<td>Congenital upper airway anomalies</td>
</tr>
<tr>
<td>Airway obstruction</td>
</tr>
<tr>
<td>Post-extubation</td>
</tr>
<tr>
<td>CPAP</td>
</tr>
<tr>
<td>Pneumonia</td>
</tr>
<tr>
<td>Hypoxia</td>
</tr>
<tr>
<td>Environmental</td>
</tr>
<tr>
<td>Increased environmental temperature</td>
</tr>
<tr>
<td>Suctioning</td>
</tr>
<tr>
<td>Feeding</td>
</tr>
<tr>
<td>Metabolic</td>
</tr>
<tr>
<td>Hypoglycemia</td>
</tr>
<tr>
<td>Hypo- and hypernatremia</td>
</tr>
<tr>
<td>Hypocalcemia</td>
</tr>
<tr>
<td>Hypo- and hyperthermia</td>
</tr>
<tr>
<td>Cardiovascular</td>
</tr>
<tr>
<td>Congestive heart failure</td>
</tr>
<tr>
<td>PDA</td>
</tr>
<tr>
<td>Anemia</td>
</tr>
<tr>
<td>Tachycardia & bradycardia</td>
</tr>
<tr>
<td>Sepsis</td>
</tr>
<tr>
<td>Polycythemia</td>
</tr>
<tr>
<td>Central Nervous System</td>
</tr>
<tr>
<td>IVH</td>
</tr>
<tr>
<td>Meningitis</td>
</tr>
<tr>
<td>Seizures</td>
</tr>
<tr>
<td>Pharmacologic sedation</td>
</tr>
<tr>
<td>Karlacteri</td>
</tr>
<tr>
<td>Immaturity of resp centers</td>
</tr>
<tr>
<td>Tumors</td>
</tr>
<tr>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>NEC</td>
</tr>
<tr>
<td>Gastroesophageal reflux</td>
</tr>
</tbody>
</table>
Central Apnea

- nonobstructive apnea
- Common type is apnea of prematurity (incidence is $1/\alpha$ to gestational age)
- absence of airflow and respiratory effort
- Many causes ----

Causes of Central Apnea

- ↓ peripheral chemoreceptor sensitivity
- ↓ arousal response (adults wake up if PaCO_2 ↑, PaO_2 ↓)
- ↓ stimulation of airway reflexes
 - Adults: something in airway (i.e. gastric reflux) →
 - Infants: something in airway →

Causes of Central Apnea

- Dysfunction of respiratory centers
- Dysfunction of ventilatory muscles
- Dysfunction of peripheral nervous system
 - Diseases affecting neurotransmission
 - Toxins (botulism)
 - Drugs that inhibit NM junction
 - Trauma
Causes of Central Apnea

• Others
 – Thermal instability
 – Metabolic disorders
 – PDA
 – Shock
 – Anemia
 – Sepsis
 – NEC

Treatment of Central Apnea

• Drugs that stimulate respiratory centers
 – CMV

Obstructive Apnea

• = absence of airflow with ventilatory effort
• Airway obstructs during inspiration
Causes of Obstructive Apnea

•
•
•
•
•
•

Diagnosis

• Dx with polysomnogram
• Monitors
 • Chest wall motion (impedance plethysmography)
 • Airflow (nasal)
 • P_{ETCO_2}
• ECG
• HR
• SpO_2
• pH

Nasal airflow

Vent efforts

Mouth open

Central apnea

Obstructive apnea

Hypopnea

EEG

HR
Rx for Obstructive Apnea

- Drugs (to reduce airway narrowing)
- Surgery
- Nasal CPAP during sleep

Diaphragmatic Hernia

- Incomplete embryological formation of diaphragm → herniation of abdominal contents into thorax
- Occurs mostly on left side through Foramen of Bochdalek
- 1/2,200 births
Diaphragmatic Hernia

- Stomach & intestines enter thorax compressing lung & pushing mediastinum to the right

- Prenatal: Lung on left does not develop
- Postnatal: Abdominal contents compress lung

Symptoms

- Chest X-Ray

Chest X-Ray
Other

Chest X-Ray

Treatment
- Mortality is very high
- Immediately upon diagnosis
 - Rates ≥
 - Hypoplastic lung
 - Is very stiff & susceptible to barotrauma

Treatment
- UAC
 - For ABG & BP
- Surgical repair
- Post-op
 - Vent x ≥
 - ↑ rates, ↓ PIP
 - Paralyze to ease ventilation
 - Dopamine & colloids if Qt is low
 - Wean as tolerated
Other

Patent Ductus Arteriosus (PDA)

Review

• Pulmonary artery blood is shunted away from fetal lungs through the ductus arteriosus
• Patent in fetus due to
 –
 –

Review

• Closure following delivery caused by
 – ↑ PaO₂ causing pulmonary vasodilation (↓ PVR)
 – ↑ PaO₂ causing systemic vasoconstriction
 – ↓ levels of circulating prostaglandins
 – Recent research says low pH at birth helps
• Functional closure -
Pathophysiology
• If d.a. doesn’t close as pulm pressures fall & aortic pressure rises -
 - Blood shunted from aorta to PA (L→R)
 - Hyperfusion & engorgement of pulm vessels
 - Hypoperfusion to all postductal organs & tissues
 - Pulm pressure ↑
 - Right heart pressure ↑

Pathophysiology
• If PAP exceeds aortic pressure
 - Shunt switches R→L

Pathophysiology
• PDA is not always undesirable
 - In presence of certain heart defects (Transposition of Great Vessels): PDA may be only connection between systemic & pulmonary circulation
 - To keep PDA open -
Diagnosis

- Most common indication = loud Grade I-
 Grade III systolic murmur heard at upper
 left sternal border
- Positive ID

 -

 -

Diagnosis

- Oxygen & noninvasive monitoring

 - R→L

 - Low PaO₂ that does not change with increases in
 FiO₂ (15 mmHg)

 - Preductal PaO₂ higher
 than postductal PaO₂

Diagnosis

- Oxygen & noninvasive monitoring

 - L→R

 - Signs of CHF & pulmonary edema

 - CXR - cardiomegaly with
 increased pulmonary
 vascularity
Other

Treatment

• If asymptomatic
 – Fluid restriction
 • <120 ml/kg/day
 • If murmur continues unimproved or deteriorating, then
 • Diuretic therapy

• If infant symptomatic & <1000 g - closure of PDA is required
 – Indomethacin (Indocin)
 • Blocks prostaglandin production → constricts systemic smooth muscle
 • Side-effects
 – Constriction of renal vessels →
 – ↓ in platelet adhesion →
 – Surgery

• If symptomatic & >1000 g
 – Fluid restriction x
 – If worsens or no improvement
 •
 •