Breath Sounds

Auscultation
- = listening for sounds produced in the body
- over chest – to ID normal & abnormal lung sounds
- all BS made by turbulent flow in the airways
- useful in making initial Dx & evaluating effects of Rx

- 4 characteristics
 › pitch (vibration frequency)
 › amplitude or intensity (loudness)
 › distinctive characteristics
 › duration of inspiration compared to expiration
Terminology

- **Tracheal**
 - normal sound heard over trachea
 - loud tubular quality
 - high-pitched
 - expiration equal to or slightly longer than inspiration

- **Bronchovesicular**
 - similar to tracheal BS
 - heard over upper 1/4 of sternum & between scapulae
 - not as loud
 - slightly lower in pitch
 - equal inspiration & expiration

- **Vesicular BS**
 - normal sound heard over lung parenchyma
 - soft, muffled
 - low in pitch & intensity
 - difficult to hear
 - heard best during inspiration, minimally during expiration
Terminology

- Respiratory disease may alter intensity of BS =
 - Absent in extreme cases
 - If intensity increases =
 - expiration equals inspiration

Terminology

- Adventitious BS
 - abnormal
 - classified as continuous
 - discontinuous
 - intermittent, short duration

Terminology

- Rales
 - discontinuous
 - popularity of term has declined
 - now use -
 - also called -

- Wheezes
 - continuous
 - musical
 - due to
Terminology

- **Rhonchi**
 - low-pitched
 - continuous
 - confusing, also being abandoned

- **Stridor**
 - heard
 - continuous
 - due to
 - loud, high pitched
 - can sometimes be heard without stethoscope

Terminology

- when abnormal BS heard, note
 - type
 - location
 - timing

Adventitious BS

- Bronchial BS heard in lung parenchyma
 - occurs when lung increases in density (consolidated)
Adventitious BS

- Diminished BS
 - decreased intensity
 - shallow breathing
 - obstructed airways
 - pneumothorax
 - pleural effusion
 - obesity

- Adventitious BS
 - Wheeze
 - vibration of wall of narrowed airway as high velocity air passes through
 - causes
 -
 -
 - tighter the compression → higher the pitch
 - note characteristics
 -

- Adventitious BS
 - Wheezing may be
 - polyphonic
 - limited to expiration
 - notes begin and end simultaneously
 - indicate obstruction of
 - monophonic
 - single or multiple, each 1 indicating obstruction of a bronchus
 - notes begin and end at different time and may overlap
 - single monophonic
Adventitious BS

- Stridor
 - similar to wheezing
 - due to upper airway obstruction
 - usually heard only during inspiration
 - cause
 - life-threatening

- Crackles - fine
 - collapsed airways “pop” open during inspiration
 - early inspiratory crackles
 - bronchioles & larger, more proximal close during expiration
 - “pop” occurs early in inspiration
 - not silenced by cough or change in position
 - crackles in peripheral alveoli & airways “pop” open during inspiration
 - late inspiratory crackles
 - peripheral alveoli & airways close during expiration
 - “pop” occurs late in inspiration
 - occur late in inspiration
 - more common in
 - may clear with changes in posture
Adventitious BS

- Crackles - coarse crackles
 - caused by air movement through secretions or fluid in airways
 - heard during inspiration & expiration
 - often clear if patient coughs or is suctioned
 - used to be called

Adventitious BS

- Don’t be fooled!!

Adventitious BS

- Pleural friction rub
 - creaking or grating
 - pleural surfaces are inflamed and rough edges are rubbing together during breathing
 - heard only during inspiration or during both phases
 - similar to coarse crackles but are not affected by coughing
 - hard to identify
Adventitious BS

- **Subcutaneous emphysema**
 - air from pulmonary air leak collects in subcutaneous tissues
 - can be localized or spread as far as legs
 - produce cracking sound and sensation when palpated

Heart Sounds

- **Heart anatomy**
 - lies between lungs in mediastinum so that right ventricle is more anterior than left ventricle
 - upper portion contain atria - “base” of heart
 - lies directly beneath upper middle sternum
 - lower portion contain ventricles - “apex” of heart
 - points downward and left to point near midclavicular line and beneath margin of sternum and 5th rib

Heart Sounds

- Separate findings into six categories
 - 1st & 2nd Heart Sounds
 - 3rd & 4th Heart Sounds
 - Clicks & Snaps
 - Murmurs
 - Rubs
Heart Sounds

- 1st and 2nd heart sounds
 - typically described as a “lub-dub”
 - “lub” (S₁)
 - results from closure of the tricuspid and mitral valves
 - low-pitched, relatively long sound
 - represents the beginning of ventricular systole
 - “dub” (S₂)
 - marks the beginning of ventricular diastole
 - produced by closure of the aortic and pulmonic semilunar vavles when the intraventricular pressure begins to fall
 - heard as a sharp snap
 - a brief pause occurs after the 2nd heart sound when the heart is beating at a normal rate - pattern that one hears is: “lub-dub” pause, “lub-dub” pause, and so on

- Loud S₂
 - due to more forceful closure of
 - increased intensity of S₂ common finding in

- 3rd and 4th heart sounds
 - ventricular wall vibrations
 - sign of heart disease in patients > 40 yo
 - S₃
 - usually indicates a ventricular abnormality
 - heard
 - S₄
 - heard
 - indicates diminished vent. wall compliance with increased resistance to filling
 - syst. hypertension, ischemic heart disease, aortic stenosis, acute mitral valve regurgitation
Heart Sounds

- Murmurs
 > due to an incompetent AV valve or stenotic semilunar valve
 > produce high-pitched swooshing sound

<table>
<thead>
<tr>
<th>SYSTOLIC</th>
<th>DIASTOLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>incompetent AV valve - allow backflow of blood into atria during systole</td>
<td>stenotic AV valve - obstructs blood flow from atrium during diastole</td>
</tr>
<tr>
<td>stenotic pulmonic valve - obstructs blood flow during systole</td>
<td>incompetent pulmonic valve - allows backflow of blood into ventricle immediately after systole</td>
</tr>
</tbody>
</table>

http://www.blaufuss.org/