Critical Care Monitoring

Hemodynamic Monitoring

Arterial Blood Pressure

- Cannulate artery
- Uses
 -
 -
 -

Technique

- Sites
 -
 -
 -
 -
 -
- Locate artery, prep
Monitoring 1

Technique

- Local anesthetic?
- Aseptic technique
- Hyper-extend (if radial)

Technique

- Needle + catheter inserted
- Catheter advanced while needle pulled out
- Connect to pressure monitoring system

Technique

- Confirm waveform
- Secure, tighten connections
- Flush system
Complications

- Occlusion of artery distal to cath
- Hemorrhage
- Hematoma
- Local tenderness
- Vasospasm
- Infection
- Skin necrosis
- Microelectric shock
Interpretation

• Blood pressure = force exerted against arterial wall as the blood moves
 • Systolic -
 • Diastolic -
 • Mean -

Interpretation

• Arterial BP determined by -
 • Force of LV contraction
 • Systemic vascular resistance (SVR)
 • Blood volume

Interpretation

• Normal BP = 90-140/60-90
 • Keep diastolic pressure > 50 mmHg since most of coronary artery perfusion occurs during diastole
 • Kidney perfusion drops to near zero if systolic pressure < 40 mmHg
Monitoring 1

Interpretation

- Mean arterial pressure (MAP) is the average pressure
 - Indicator of tissue perfusion
 - Normal =
 - Calculated by monitor

 \[\text{MAP} = \frac{\text{systolic} + (2 \times \text{diastolic})}{3} \]

- Pulse pressure = systolic - diastolic
 - Normal =
 - Indicator of arterial wall tone

<table>
<thead>
<tr>
<th>↑ pulse pressure</th>
<th>↓ pulse pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arteriosclerosis</td>
<td>Aortic stenosis</td>
</tr>
<tr>
<td>Aortic valve disease</td>
<td>Mitral stenosis</td>
</tr>
<tr>
<td>Head injury</td>
<td>Circulatory shock</td>
</tr>
<tr>
<td></td>
<td>Pulmonary emboli</td>
</tr>
</tbody>
</table>

Interpretation

- Hypertension = BP consistently
- Hypotension = BP consistently
- Paradoxical pulse (pulsus paradoxus)
 -
 -
Paradoxical Pulse

- Inspiration

 - Increased neg press

 - Venous return ↑

 - RV filling ↓

 - Interventricular septum distends left

 - LV filling ↓

 - LV SV ↓

 - Airflow to lungs

Central Venous Pressure

- Uses

 -

 -

 -

 -

 -
Central Venous Pressure

- Insertion
 - Sites
 -
 -
 - Aseptic
 - Skin prepped

CVP

- Insertion (con't)
 - Tourniquet
 - Tongue blade
 - Trendelenberg

CVP

- Insertion (con't)

Method 1 - Catheter through needle
Monitoring 1

CVP

Insertion (con't)

Method 2 - Catheter with guidewire

Measurement

- Transducer method
 - Normal:
 -
 -

Water manometer method

- Normal:
 -
 -

Conversion

1 mmHg = cmH$_2$O

CVP

- Complications
 -
 -
 -
 -
 -
 -
 -

CVP Interpretation

- During diastole (vent filling time) - tricuspid valve is open - SO-o-o-o...
CVP Interpretation

• Why is CVP important?
 1. Determined by vascular blood volume
 2. Determines blood flow through the pulmonary circuit

Causes of ↑ CVP

• Any factor that increases the amount of blood volume returning to the heart
 •

Causes of ↑ CVP

• Any factor that decreases the pumping ability of the right ventricle (blood “backs up” in the venous system)
 •
 •
 •
 •
Causes of \uparrow CVP

- Any factor that increases PVR
 -
 -
 -

Causes of \uparrow CVP

- Any factor that increases intrathoracic pressure
 -
 -
 -
 - Misc
 -

Causes of \downarrow CVP

- Hypovolemia
 - Dehydration, hemorrhage, GI loss, diuresis, interstitial edema, relative
- Air bubbles
- Leaks
- 0 level above RA
CVP Summary

• Trends most important
• Blood sampling (central)
• Assess
 •
 •
 •

Pulmonary Artery Catheterization

The inability to catheterize the left heart led to the development of the Swan-Ganz catheter in the late 1960s.

PA Catheters

• BTFDC - balloon-tipped flow-directed catheter
• Ideal catheter has many parts & functions
PA Catheters

• Pacemaker connections
 • Atrial bands -
 • Ventricular bands -

• Thermodilution (computer) connection

PA Catheters

• Distal lumen connector
 • Opens in PA

• Proximal lumen connector
 • Opens 30 cm from tip in RA
 • May have 2-3 connectors + thermodilution lumen

PA Catheters

• Balloon lumen connector
 • Opens inside balloon
 • Each balloon has max capacity marked on connector (0.8 - 1.5 ml)

• Thermistor bead
 • 4 cm from tip
 • For Q̇ measurement
PA Catheters

- All caths have at least
 -
 -
 -
- Sizes for adults: 5 - 7.5 Fr.

PA Catheter Uses

- Measure pressures
 -
 -
 -
 - Measure Q_{\text{T}}

PA Catheter Uses

- Blood sampling
 -
 -
- Fluid infusion
 -
PA Catheter Insertion

- Transducer set-up, cal, zero
- Patient supine, trend if needed
- Sedation
- Draped with sterile towels
- Aseptic prep
- BTFDC placed in bowl of sterile saline

PA Catheter Insertion

- Balloon checked in saline then deflated
- Cath flushed with heparinized solution
- Local anesthetic applied
- Site
 -
 -
 -

PA Catheter Insertion

- Catheter through needle or guidewire method used + introducer
- Connected to IV, transducer, tubing, all fluid-filled, heparinized, pressurized
PA Catheter Insertion

- Cath advanced into RA
- Balloon inflated
- As cath advanced flow of blood carries cath (w/ balloon inflated) into RV

PA Catheter Insertion

- . . . Through pulmonic valve . . .
- into PA
- wedges in small pulmonary artery

PA Catheter Insertion

- Balloon immediately deflated !!!
- If cath is in correct position, PA waveform will appear on monitor
- Balloon never left inflated for longer than it takes to obtain PCWP reading (< 15 sec.)
- Cath anchored w/suture, dressing
- CXR to confirm placement
Monitoring 1