GAS TRANSPORT IN THE BLOOD
Section 5, Part B

CARBON DIOXIDE TRANSPORT

CO₂ is an end product of cellular metabolism of glucose.

1. \(R = .8 \)
2. unless breathing CO₂, all CO₂ in venous, arterial blood and alveolar gas originates from the cell
3. CO₂ diffuses out of the cell into the blood stream and then to the lungs

A. CO₂ transport in plasma -
1. CO₂ will dissolve in plasma -
2. CO₂ will slowly react with water -
 a. \(\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3 \leftrightarrow \text{H}^+ + \text{HCO}_3^- \)
 b. \(\text{H}^+ \) is buffered by plasma buffering systems
3. CO₂ will react with free amino groups -
 a. \(\text{R}^-\text{NH}_2 + \text{CO}_2 \leftrightarrow \text{R}^-\text{NHCOO}^- + \text{H}^+ \)

B. CO₂ transport in the erythrocyte
1. CO₂ will dissolve within the red blood cell (RBC)
2. CO₂ will combine with hemoglobin (Hb) to form carbamino compounds
 a. \(\text{R}^-\text{NH}_2 + \text{CO}_2 \leftrightarrow \text{R}^-\text{NHCOO}^- + \text{H}^+ \)
 b. an increase of CO₂ will cause an isohydric effect -
 c. the pressure of O₂ on the heme inhibits CO₂ from attaching to the NH₂ site (Haldane effect)
3. CO₂ reacts more rapidly in the RBC because of the enzyme carbonic anhydrase (CA)
 a. \(\text{H}^+ \) formed are quickly buffered by Hb
 b. \(\text{HCO}_3^- \) form a weak ionic relationship with \(\text{K}^+ \)
 c. \(\text{HCO}_3^- \) diffuses out of the RBC -
 d. \(\text{Cl}^- \) moves into the RBC (Hamburger phen.) -
 e. \(\text{HCO}_3^- \) then forms a weak ionic bond with \(\text{Na}^+ \) in plasma
 f. as the CO₂ concentration falls in the plasma the reaction will reverse in direction
4. most of the buffering occurs in the RBC
5. 2/3 of CO₂ is carried in the plasma

C. CO₂ dissociation curve
1. the solubility coefficient (Cs) for CO₂ in blood at 37° C is 0.063 vol%/torr
 a. if \(\text{PaCO}_2 \) is 40 torr then: \(40 \text{ torr} \times 0.063 \text{ vol%/torr} = 2.52 \text{ vol%} \)
2. most CO₂ is carried as \(\text{HCO}_3^- \) and must first pass through the RBC
3. at a \(\text{PaCO}_2 = 40 \text{ torr} \), total \(\text{CO}_2 = 48.5 \text{ vol%} \) (\(\text{PaO}_2 =100 \))
4. at a \(\text{PvCO}_2 = 46 \text{ torr} \), total \(\text{CO}_2 = 52.2 \text{ vol%} \) (\(\text{PaO}_2 = 42 \))

D. body stores of CO₂
1. CO₂ stores are the largest of any gas in the body
2. normally CO₂ production is offset by CO₂ elimination
3. CO₂ compartments
 a. body fluids - 50 ml of CO₂ per 100 ml of fluid -
 b. bone contains more than 100 vol% of CO₂
4. as hypoventilation occurs, CO₂ reservoirs fill
5. as hyperventilation occurs, CO₂ reservoirs are depleted -